ai-content-maker/.venv/Lib/site-packages/transformers/utils/dummy_tf_objects.py

2992 lines
66 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
# This file is autogenerated by the command `make fix-copies`, do not edit.
from ..utils import DummyObject, requires_backends
class TensorFlowBenchmarkArguments(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TensorFlowBenchmark(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFForcedBOSTokenLogitsProcessor(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFForcedEOSTokenLogitsProcessor(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFForceTokensLogitsProcessor(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFGenerationMixin(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFLogitsProcessor(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFLogitsProcessorList(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFLogitsWarper(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFMinLengthLogitsProcessor(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFNoBadWordsLogitsProcessor(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFNoRepeatNGramLogitsProcessor(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFRepetitionPenaltyLogitsProcessor(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFSuppressTokensAtBeginLogitsProcessor(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFSuppressTokensLogitsProcessor(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFTemperatureLogitsWarper(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFTopKLogitsWarper(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFTopPLogitsWarper(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class KerasMetricCallback(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class PushToHubCallback(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFSequenceSummary(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFSharedEmbeddings(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
def shape_list(*args, **kwargs):
requires_backends(shape_list, ["tf"])
TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFAlbertForMaskedLM(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFAlbertForMultipleChoice(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFAlbertForPreTraining(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFAlbertForQuestionAnswering(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFAlbertForSequenceClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFAlbertForTokenClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFAlbertMainLayer(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFAlbertModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFAlbertPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING = None
TF_MODEL_FOR_CAUSAL_LM_MAPPING = None
TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING = None
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING = None
TF_MODEL_FOR_MASK_GENERATION_MAPPING = None
TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING = None
TF_MODEL_FOR_MASKED_LM_MAPPING = None
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING = None
TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING = None
TF_MODEL_FOR_PRETRAINING_MAPPING = None
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING = None
TF_MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING = None
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING = None
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING = None
TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING = None
TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING = None
TF_MODEL_FOR_TEXT_ENCODING_MAPPING = None
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING = None
TF_MODEL_FOR_VISION_2_SEQ_MAPPING = None
TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING = None
TF_MODEL_MAPPING = None
TF_MODEL_WITH_LM_HEAD_MAPPING = None
class TFAutoModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFAutoModelForAudioClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFAutoModelForCausalLM(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFAutoModelForDocumentQuestionAnswering(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFAutoModelForImageClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFAutoModelForMaskedImageModeling(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFAutoModelForMaskedLM(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFAutoModelForMaskGeneration(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFAutoModelForMultipleChoice(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFAutoModelForNextSentencePrediction(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFAutoModelForPreTraining(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFAutoModelForQuestionAnswering(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFAutoModelForSemanticSegmentation(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFAutoModelForSeq2SeqLM(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFAutoModelForSequenceClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFAutoModelForSpeechSeq2Seq(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFAutoModelForTableQuestionAnswering(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFAutoModelForTextEncoding(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFAutoModelForTokenClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFAutoModelForVision2Seq(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFAutoModelForZeroShotImageClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFAutoModelWithLMHead(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFBartForConditionalGeneration(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFBartForSequenceClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFBartModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFBartPretrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFBertEmbeddings(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFBertForMaskedLM(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFBertForMultipleChoice(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFBertForNextSentencePrediction(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFBertForPreTraining(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFBertForQuestionAnswering(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFBertForSequenceClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFBertForTokenClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFBertLMHeadModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFBertMainLayer(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFBertModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFBertPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFBlenderbotForConditionalGeneration(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFBlenderbotModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFBlenderbotPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFBlenderbotSmallForConditionalGeneration(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFBlenderbotSmallModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFBlenderbotSmallPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFBlipForConditionalGeneration(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFBlipForImageTextRetrieval(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFBlipForQuestionAnswering(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFBlipModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFBlipPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFBlipTextModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFBlipVisionModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFCamembertForCausalLM(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFCamembertForMaskedLM(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFCamembertForMultipleChoice(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFCamembertForQuestionAnswering(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFCamembertForSequenceClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFCamembertForTokenClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFCamembertModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFCamembertPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFCLIPModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFCLIPPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFCLIPTextModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFCLIPVisionModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFConvBertForMaskedLM(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFConvBertForMultipleChoice(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFConvBertForQuestionAnswering(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFConvBertForSequenceClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFConvBertForTokenClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFConvBertLayer(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFConvBertModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFConvBertPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFConvNextForImageClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFConvNextModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFConvNextPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFConvNextV2ForImageClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFConvNextV2Model(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFConvNextV2PreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFCTRLForSequenceClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFCTRLLMHeadModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFCTRLModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFCTRLPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFCvtForImageClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFCvtModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFCvtPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFData2VecVisionForImageClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFData2VecVisionForSemanticSegmentation(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFData2VecVisionModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFData2VecVisionPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFDebertaForMaskedLM(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFDebertaForQuestionAnswering(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFDebertaForSequenceClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFDebertaForTokenClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFDebertaModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFDebertaPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFDebertaV2ForMaskedLM(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFDebertaV2ForMultipleChoice(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFDebertaV2ForQuestionAnswering(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFDebertaV2ForSequenceClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFDebertaV2ForTokenClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFDebertaV2Model(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFDebertaV2PreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFDeiTForImageClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFDeiTForImageClassificationWithTeacher(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFDeiTForMaskedImageModeling(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFDeiTModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFDeiTPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFAdaptiveEmbedding(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFTransfoXLForSequenceClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFTransfoXLLMHeadModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFTransfoXLMainLayer(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFTransfoXLModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFTransfoXLPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFDistilBertForMaskedLM(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFDistilBertForMultipleChoice(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFDistilBertForQuestionAnswering(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFDistilBertForSequenceClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFDistilBertForTokenClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFDistilBertMainLayer(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFDistilBertModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFDistilBertPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = None
TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = None
TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFDPRContextEncoder(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFDPRPretrainedContextEncoder(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFDPRPretrainedQuestionEncoder(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFDPRPretrainedReader(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFDPRQuestionEncoder(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFDPRReader(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFEfficientFormerForImageClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFEfficientFormerForImageClassificationWithTeacher(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFEfficientFormerModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFEfficientFormerPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFElectraForMaskedLM(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFElectraForMultipleChoice(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFElectraForPreTraining(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFElectraForQuestionAnswering(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFElectraForSequenceClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFElectraForTokenClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFElectraModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFElectraPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFEncoderDecoderModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
ESM_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFEsmForMaskedLM(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFEsmForSequenceClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFEsmForTokenClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFEsmModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFEsmPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFFlaubertForMultipleChoice(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFFlaubertForQuestionAnsweringSimple(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFFlaubertForSequenceClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFFlaubertForTokenClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFFlaubertModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFFlaubertPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFFlaubertWithLMHeadModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFFunnelBaseModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFFunnelForMaskedLM(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFFunnelForMultipleChoice(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFFunnelForPreTraining(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFFunnelForQuestionAnswering(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFFunnelForSequenceClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFFunnelForTokenClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFFunnelModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFFunnelPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFGPT2DoubleHeadsModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFGPT2ForSequenceClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFGPT2LMHeadModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFGPT2MainLayer(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFGPT2Model(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFGPT2PreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFGPTJForCausalLM(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFGPTJForQuestionAnswering(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFGPTJForSequenceClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFGPTJModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFGPTJPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFGroupViTModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFGroupViTPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFGroupViTTextModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFGroupViTVisionModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFHubertForCTC(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFHubertModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFHubertPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFLayoutLMForMaskedLM(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFLayoutLMForQuestionAnswering(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFLayoutLMForSequenceClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFLayoutLMForTokenClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFLayoutLMMainLayer(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFLayoutLMModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFLayoutLMPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFLayoutLMv3ForQuestionAnswering(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFLayoutLMv3ForSequenceClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFLayoutLMv3ForTokenClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFLayoutLMv3Model(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFLayoutLMv3PreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFLEDForConditionalGeneration(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFLEDModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFLEDPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFLongformerForMaskedLM(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFLongformerForMultipleChoice(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFLongformerForQuestionAnswering(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFLongformerForSequenceClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFLongformerForTokenClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFLongformerModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFLongformerPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFLongformerSelfAttention(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFLxmertForPreTraining(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFLxmertMainLayer(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFLxmertModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFLxmertPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFLxmertVisualFeatureEncoder(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFMarianModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFMarianMTModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFMarianPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFMBartForConditionalGeneration(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFMBartModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFMBartPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFMobileBertForMaskedLM(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFMobileBertForMultipleChoice(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFMobileBertForNextSentencePrediction(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFMobileBertForPreTraining(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFMobileBertForQuestionAnswering(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFMobileBertForSequenceClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFMobileBertForTokenClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFMobileBertMainLayer(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFMobileBertModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFMobileBertPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFMobileViTForImageClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFMobileViTForSemanticSegmentation(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFMobileViTModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFMobileViTPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_MPNET_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFMPNetForMaskedLM(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFMPNetForMultipleChoice(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFMPNetForQuestionAnswering(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFMPNetForSequenceClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFMPNetForTokenClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFMPNetMainLayer(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFMPNetModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFMPNetPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFMT5EncoderModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFMT5ForConditionalGeneration(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFMT5Model(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFOpenAIGPTDoubleHeadsModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFOpenAIGPTForSequenceClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFOpenAIGPTLMHeadModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFOpenAIGPTMainLayer(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFOpenAIGPTModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFOpenAIGPTPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFOPTForCausalLM(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFOPTModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFOPTPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFPegasusForConditionalGeneration(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFPegasusModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFPegasusPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFRagModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFRagPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFRagSequenceForGeneration(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFRagTokenForGeneration(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFRegNetForImageClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFRegNetModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFRegNetPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFRemBertForCausalLM(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFRemBertForMaskedLM(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFRemBertForMultipleChoice(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFRemBertForQuestionAnswering(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFRemBertForSequenceClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFRemBertForTokenClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFRemBertLayer(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFRemBertModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFRemBertPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFResNetForImageClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFResNetModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFResNetPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFRobertaForCausalLM(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFRobertaForMaskedLM(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFRobertaForMultipleChoice(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFRobertaForQuestionAnswering(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFRobertaForSequenceClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFRobertaForTokenClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFRobertaMainLayer(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFRobertaModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFRobertaPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFRobertaPreLayerNormForCausalLM(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFRobertaPreLayerNormForMaskedLM(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFRobertaPreLayerNormForMultipleChoice(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFRobertaPreLayerNormForQuestionAnswering(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFRobertaPreLayerNormForSequenceClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFRobertaPreLayerNormForTokenClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFRobertaPreLayerNormMainLayer(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFRobertaPreLayerNormModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFRobertaPreLayerNormPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFRoFormerForCausalLM(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFRoFormerForMaskedLM(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFRoFormerForMultipleChoice(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFRoFormerForQuestionAnswering(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFRoFormerForSequenceClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFRoFormerForTokenClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFRoFormerLayer(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFRoFormerModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFRoFormerPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_SAM_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFSamModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFSamPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFSegformerDecodeHead(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFSegformerForImageClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFSegformerForSemanticSegmentation(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFSegformerModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFSegformerPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFSpeech2TextForConditionalGeneration(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFSpeech2TextModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFSpeech2TextPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFSwinForImageClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFSwinForMaskedImageModeling(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFSwinModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFSwinPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFT5EncoderModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFT5ForConditionalGeneration(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFT5Model(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFT5PreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFTapasForMaskedLM(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFTapasForQuestionAnswering(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFTapasForSequenceClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFTapasModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFTapasPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFVisionEncoderDecoderModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFVisionTextDualEncoderModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFViTForImageClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFViTModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFViTPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFViTMAEForPreTraining(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFViTMAEModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFViTMAEPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFWav2Vec2ForCTC(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFWav2Vec2ForSequenceClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFWav2Vec2Model(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFWav2Vec2PreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFWhisperForConditionalGeneration(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFWhisperModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFWhisperPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFXGLMForCausalLM(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFXGLMModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFXGLMPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFXLMForMultipleChoice(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFXLMForQuestionAnsweringSimple(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFXLMForSequenceClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFXLMForTokenClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFXLMMainLayer(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFXLMModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFXLMPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFXLMWithLMHeadModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFXLMRobertaForCausalLM(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFXLMRobertaForMaskedLM(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFXLMRobertaForMultipleChoice(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFXLMRobertaForQuestionAnswering(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFXLMRobertaForSequenceClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFXLMRobertaForTokenClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFXLMRobertaModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFXLMRobertaPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFXLNetForMultipleChoice(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFXLNetForQuestionAnsweringSimple(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFXLNetForSequenceClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFXLNetForTokenClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFXLNetLMHeadModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFXLNetMainLayer(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFXLNetModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFXLNetPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class AdamWeightDecay(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class GradientAccumulator(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class WarmUp(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
def create_optimizer(*args, **kwargs):
requires_backends(create_optimizer, ["tf"])