1542 lines
52 KiB
Python
1542 lines
52 KiB
Python
|
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""
|
||
|
Import utilities: Utilities related to imports and our lazy inits.
|
||
|
"""
|
||
|
|
||
|
import importlib.metadata
|
||
|
import importlib.util
|
||
|
import json
|
||
|
import os
|
||
|
import shutil
|
||
|
import subprocess
|
||
|
import sys
|
||
|
import warnings
|
||
|
from collections import OrderedDict
|
||
|
from functools import lru_cache
|
||
|
from itertools import chain
|
||
|
from types import ModuleType
|
||
|
from typing import Any, Tuple, Union
|
||
|
|
||
|
from packaging import version
|
||
|
|
||
|
from . import logging
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||
|
|
||
|
|
||
|
# TODO: This doesn't work for all packages (`bs4`, `faiss`, etc.) Talk to Sylvain to see how to do with it better.
|
||
|
def _is_package_available(pkg_name: str, return_version: bool = False) -> Union[Tuple[bool, str], bool]:
|
||
|
# Check if the package spec exists and grab its version to avoid importing a local directory
|
||
|
package_exists = importlib.util.find_spec(pkg_name) is not None
|
||
|
package_version = "N/A"
|
||
|
if package_exists:
|
||
|
try:
|
||
|
# Primary method to get the package version
|
||
|
package_version = importlib.metadata.version(pkg_name)
|
||
|
except importlib.metadata.PackageNotFoundError:
|
||
|
# Fallback method: Only for "torch" and versions containing "dev"
|
||
|
if pkg_name == "torch":
|
||
|
try:
|
||
|
package = importlib.import_module(pkg_name)
|
||
|
temp_version = getattr(package, "__version__", "N/A")
|
||
|
# Check if the version contains "dev"
|
||
|
if "dev" in temp_version:
|
||
|
package_version = temp_version
|
||
|
package_exists = True
|
||
|
else:
|
||
|
package_exists = False
|
||
|
except ImportError:
|
||
|
# If the package can't be imported, it's not available
|
||
|
package_exists = False
|
||
|
else:
|
||
|
# For packages other than "torch", don't attempt the fallback and set as not available
|
||
|
package_exists = False
|
||
|
logger.debug(f"Detected {pkg_name} version: {package_version}")
|
||
|
if return_version:
|
||
|
return package_exists, package_version
|
||
|
else:
|
||
|
return package_exists
|
||
|
|
||
|
|
||
|
ENV_VARS_TRUE_VALUES = {"1", "ON", "YES", "TRUE"}
|
||
|
ENV_VARS_TRUE_AND_AUTO_VALUES = ENV_VARS_TRUE_VALUES.union({"AUTO"})
|
||
|
|
||
|
USE_TF = os.environ.get("USE_TF", "AUTO").upper()
|
||
|
USE_TORCH = os.environ.get("USE_TORCH", "AUTO").upper()
|
||
|
USE_JAX = os.environ.get("USE_FLAX", "AUTO").upper()
|
||
|
|
||
|
# Try to run a native pytorch job in an environment with TorchXLA installed by setting this value to 0.
|
||
|
USE_TORCH_XLA = os.environ.get("USE_TORCH_XLA", "1").upper()
|
||
|
|
||
|
FORCE_TF_AVAILABLE = os.environ.get("FORCE_TF_AVAILABLE", "AUTO").upper()
|
||
|
|
||
|
# `transformers` requires `torch>=1.11` but this variable is exposed publicly, and we can't simply remove it.
|
||
|
# This is the version of torch required to run torch.fx features and torch.onnx with dictionary inputs.
|
||
|
TORCH_FX_REQUIRED_VERSION = version.parse("1.10")
|
||
|
|
||
|
ACCELERATE_MIN_VERSION = "0.21.0"
|
||
|
FSDP_MIN_VERSION = "1.12.0"
|
||
|
XLA_FSDPV2_MIN_VERSION = "2.2.0"
|
||
|
|
||
|
|
||
|
_accelerate_available, _accelerate_version = _is_package_available("accelerate", return_version=True)
|
||
|
_apex_available = _is_package_available("apex")
|
||
|
_aqlm_available = _is_package_available("aqlm")
|
||
|
_av_available = importlib.util.find_spec("av") is not None
|
||
|
_bitsandbytes_available = _is_package_available("bitsandbytes")
|
||
|
_galore_torch_available = _is_package_available("galore_torch")
|
||
|
# `importlib.metadata.version` doesn't work with `bs4` but `beautifulsoup4`. For `importlib.util.find_spec`, reversed.
|
||
|
_bs4_available = importlib.util.find_spec("bs4") is not None
|
||
|
_coloredlogs_available = _is_package_available("coloredlogs")
|
||
|
# `importlib.metadata.util` doesn't work with `opencv-python-headless`.
|
||
|
_cv2_available = importlib.util.find_spec("cv2") is not None
|
||
|
_datasets_available = _is_package_available("datasets")
|
||
|
_decord_available = importlib.util.find_spec("decord") is not None
|
||
|
_detectron2_available = _is_package_available("detectron2")
|
||
|
# We need to check both `faiss` and `faiss-cpu`.
|
||
|
_faiss_available = importlib.util.find_spec("faiss") is not None
|
||
|
try:
|
||
|
_faiss_version = importlib.metadata.version("faiss")
|
||
|
logger.debug(f"Successfully imported faiss version {_faiss_version}")
|
||
|
except importlib.metadata.PackageNotFoundError:
|
||
|
try:
|
||
|
_faiss_version = importlib.metadata.version("faiss-cpu")
|
||
|
logger.debug(f"Successfully imported faiss version {_faiss_version}")
|
||
|
except importlib.metadata.PackageNotFoundError:
|
||
|
_faiss_available = False
|
||
|
_ftfy_available = _is_package_available("ftfy")
|
||
|
_g2p_en_available = _is_package_available("g2p_en")
|
||
|
_ipex_available, _ipex_version = _is_package_available("intel_extension_for_pytorch", return_version=True)
|
||
|
_jieba_available = _is_package_available("jieba")
|
||
|
_jinja_available = _is_package_available("jinja2")
|
||
|
_kenlm_available = _is_package_available("kenlm")
|
||
|
_keras_nlp_available = _is_package_available("keras_nlp")
|
||
|
_levenshtein_available = _is_package_available("Levenshtein")
|
||
|
_librosa_available = _is_package_available("librosa")
|
||
|
_natten_available = _is_package_available("natten")
|
||
|
_nltk_available = _is_package_available("nltk")
|
||
|
_onnx_available = _is_package_available("onnx")
|
||
|
_openai_available = _is_package_available("openai")
|
||
|
_optimum_available = _is_package_available("optimum")
|
||
|
_auto_gptq_available = _is_package_available("auto_gptq")
|
||
|
# `importlib.metadata.version` doesn't work with `awq`
|
||
|
_auto_awq_available = importlib.util.find_spec("awq") is not None
|
||
|
_quanto_available = _is_package_available("quanto")
|
||
|
_pandas_available = _is_package_available("pandas")
|
||
|
_peft_available = _is_package_available("peft")
|
||
|
_phonemizer_available = _is_package_available("phonemizer")
|
||
|
_psutil_available = _is_package_available("psutil")
|
||
|
_py3nvml_available = _is_package_available("py3nvml")
|
||
|
_pyctcdecode_available = _is_package_available("pyctcdecode")
|
||
|
_pytesseract_available = _is_package_available("pytesseract")
|
||
|
_pytest_available = _is_package_available("pytest")
|
||
|
_pytorch_quantization_available = _is_package_available("pytorch_quantization")
|
||
|
_rjieba_available = _is_package_available("rjieba")
|
||
|
_sacremoses_available = _is_package_available("sacremoses")
|
||
|
_safetensors_available = _is_package_available("safetensors")
|
||
|
_scipy_available = _is_package_available("scipy")
|
||
|
_sentencepiece_available = _is_package_available("sentencepiece")
|
||
|
_is_seqio_available = _is_package_available("seqio")
|
||
|
_sklearn_available = importlib.util.find_spec("sklearn") is not None
|
||
|
if _sklearn_available:
|
||
|
try:
|
||
|
importlib.metadata.version("scikit-learn")
|
||
|
except importlib.metadata.PackageNotFoundError:
|
||
|
_sklearn_available = False
|
||
|
_smdistributed_available = importlib.util.find_spec("smdistributed") is not None
|
||
|
_soundfile_available = _is_package_available("soundfile")
|
||
|
_spacy_available = _is_package_available("spacy")
|
||
|
_sudachipy_available, _sudachipy_version = _is_package_available("sudachipy", return_version=True)
|
||
|
_tensorflow_probability_available = _is_package_available("tensorflow_probability")
|
||
|
_tensorflow_text_available = _is_package_available("tensorflow_text")
|
||
|
_tf2onnx_available = _is_package_available("tf2onnx")
|
||
|
_timm_available = _is_package_available("timm")
|
||
|
_tokenizers_available = _is_package_available("tokenizers")
|
||
|
_torchaudio_available = _is_package_available("torchaudio")
|
||
|
_torchdistx_available = _is_package_available("torchdistx")
|
||
|
_torchvision_available = _is_package_available("torchvision")
|
||
|
_mlx_available = _is_package_available("mlx")
|
||
|
|
||
|
|
||
|
_torch_version = "N/A"
|
||
|
_torch_available = False
|
||
|
if USE_TORCH in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TF not in ENV_VARS_TRUE_VALUES:
|
||
|
_torch_available, _torch_version = _is_package_available("torch", return_version=True)
|
||
|
else:
|
||
|
logger.info("Disabling PyTorch because USE_TF is set")
|
||
|
_torch_available = False
|
||
|
|
||
|
|
||
|
_tf_version = "N/A"
|
||
|
_tf_available = False
|
||
|
if FORCE_TF_AVAILABLE in ENV_VARS_TRUE_VALUES:
|
||
|
_tf_available = True
|
||
|
else:
|
||
|
if USE_TF in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TORCH not in ENV_VARS_TRUE_VALUES:
|
||
|
# Note: _is_package_available("tensorflow") fails for tensorflow-cpu. Please test any changes to the line below
|
||
|
# with tensorflow-cpu to make sure it still works!
|
||
|
_tf_available = importlib.util.find_spec("tensorflow") is not None
|
||
|
if _tf_available:
|
||
|
candidates = (
|
||
|
"tensorflow",
|
||
|
"tensorflow-cpu",
|
||
|
"tensorflow-gpu",
|
||
|
"tf-nightly",
|
||
|
"tf-nightly-cpu",
|
||
|
"tf-nightly-gpu",
|
||
|
"tf-nightly-rocm",
|
||
|
"intel-tensorflow",
|
||
|
"intel-tensorflow-avx512",
|
||
|
"tensorflow-rocm",
|
||
|
"tensorflow-macos",
|
||
|
"tensorflow-aarch64",
|
||
|
)
|
||
|
_tf_version = None
|
||
|
# For the metadata, we have to look for both tensorflow and tensorflow-cpu
|
||
|
for pkg in candidates:
|
||
|
try:
|
||
|
_tf_version = importlib.metadata.version(pkg)
|
||
|
break
|
||
|
except importlib.metadata.PackageNotFoundError:
|
||
|
pass
|
||
|
_tf_available = _tf_version is not None
|
||
|
if _tf_available:
|
||
|
if version.parse(_tf_version) < version.parse("2"):
|
||
|
logger.info(
|
||
|
f"TensorFlow found but with version {_tf_version}. Transformers requires version 2 minimum."
|
||
|
)
|
||
|
_tf_available = False
|
||
|
else:
|
||
|
logger.info("Disabling Tensorflow because USE_TORCH is set")
|
||
|
|
||
|
|
||
|
_essentia_available = importlib.util.find_spec("essentia") is not None
|
||
|
try:
|
||
|
_essentia_version = importlib.metadata.version("essentia")
|
||
|
logger.debug(f"Successfully imported essentia version {_essentia_version}")
|
||
|
except importlib.metadata.PackageNotFoundError:
|
||
|
_essentia_version = False
|
||
|
|
||
|
|
||
|
_pretty_midi_available = importlib.util.find_spec("pretty_midi") is not None
|
||
|
try:
|
||
|
_pretty_midi_version = importlib.metadata.version("pretty_midi")
|
||
|
logger.debug(f"Successfully imported pretty_midi version {_pretty_midi_version}")
|
||
|
except importlib.metadata.PackageNotFoundError:
|
||
|
_pretty_midi_available = False
|
||
|
|
||
|
|
||
|
ccl_version = "N/A"
|
||
|
_is_ccl_available = (
|
||
|
importlib.util.find_spec("torch_ccl") is not None
|
||
|
or importlib.util.find_spec("oneccl_bindings_for_pytorch") is not None
|
||
|
)
|
||
|
try:
|
||
|
ccl_version = importlib.metadata.version("oneccl_bind_pt")
|
||
|
logger.debug(f"Detected oneccl_bind_pt version {ccl_version}")
|
||
|
except importlib.metadata.PackageNotFoundError:
|
||
|
_is_ccl_available = False
|
||
|
|
||
|
|
||
|
_flax_available = False
|
||
|
if USE_JAX in ENV_VARS_TRUE_AND_AUTO_VALUES:
|
||
|
_flax_available, _flax_version = _is_package_available("flax", return_version=True)
|
||
|
if _flax_available:
|
||
|
_jax_available, _jax_version = _is_package_available("jax", return_version=True)
|
||
|
if _jax_available:
|
||
|
logger.info(f"JAX version {_jax_version}, Flax version {_flax_version} available.")
|
||
|
else:
|
||
|
_flax_available = _jax_available = False
|
||
|
_jax_version = _flax_version = "N/A"
|
||
|
|
||
|
|
||
|
_torch_fx_available = False
|
||
|
if _torch_available:
|
||
|
torch_version = version.parse(_torch_version)
|
||
|
_torch_fx_available = (torch_version.major, torch_version.minor) >= (
|
||
|
TORCH_FX_REQUIRED_VERSION.major,
|
||
|
TORCH_FX_REQUIRED_VERSION.minor,
|
||
|
)
|
||
|
|
||
|
|
||
|
_torch_xla_available = False
|
||
|
if USE_TORCH_XLA in ENV_VARS_TRUE_VALUES:
|
||
|
_torch_xla_available, _torch_xla_version = _is_package_available("torch_xla", return_version=True)
|
||
|
if _torch_xla_available:
|
||
|
logger.info(f"Torch XLA version {_torch_xla_version} available.")
|
||
|
|
||
|
|
||
|
def is_kenlm_available():
|
||
|
return _kenlm_available
|
||
|
|
||
|
|
||
|
def is_cv2_available():
|
||
|
return _cv2_available
|
||
|
|
||
|
|
||
|
def is_torch_available():
|
||
|
return _torch_available
|
||
|
|
||
|
|
||
|
def get_torch_version():
|
||
|
return _torch_version
|
||
|
|
||
|
|
||
|
def is_torch_sdpa_available():
|
||
|
if not is_torch_available():
|
||
|
return False
|
||
|
elif _torch_version == "N/A":
|
||
|
return False
|
||
|
|
||
|
# NOTE: We require torch>=2.1 (and not torch>=2.0) to use SDPA in Transformers for two reasons:
|
||
|
# - Allow the global use of the `scale` argument introduced in https://github.com/pytorch/pytorch/pull/95259
|
||
|
# - Memory-efficient attention supports arbitrary attention_mask: https://github.com/pytorch/pytorch/pull/104310
|
||
|
# NOTE: We require torch>=2.1.1 to avoid a numerical issue in SDPA with non-contiguous inputs: https://github.com/pytorch/pytorch/issues/112577
|
||
|
return version.parse(_torch_version) >= version.parse("2.1.1")
|
||
|
|
||
|
|
||
|
def is_torchvision_available():
|
||
|
return _torchvision_available
|
||
|
|
||
|
|
||
|
def is_galore_torch_available():
|
||
|
return _galore_torch_available
|
||
|
|
||
|
|
||
|
def is_pyctcdecode_available():
|
||
|
return _pyctcdecode_available
|
||
|
|
||
|
|
||
|
def is_librosa_available():
|
||
|
return _librosa_available
|
||
|
|
||
|
|
||
|
def is_essentia_available():
|
||
|
return _essentia_available
|
||
|
|
||
|
|
||
|
def is_pretty_midi_available():
|
||
|
return _pretty_midi_available
|
||
|
|
||
|
|
||
|
def is_torch_cuda_available():
|
||
|
if is_torch_available():
|
||
|
import torch
|
||
|
|
||
|
return torch.cuda.is_available()
|
||
|
else:
|
||
|
return False
|
||
|
|
||
|
|
||
|
def is_mamba_ssm_available():
|
||
|
if is_torch_available():
|
||
|
import torch
|
||
|
|
||
|
if not torch.cuda.is_available():
|
||
|
return False
|
||
|
else:
|
||
|
return _is_package_available("mamba_ssm")
|
||
|
return False
|
||
|
|
||
|
|
||
|
def is_causal_conv1d_available():
|
||
|
if is_torch_available():
|
||
|
import torch
|
||
|
|
||
|
if not torch.cuda.is_available():
|
||
|
return False
|
||
|
return _is_package_available("causal_conv1d")
|
||
|
return False
|
||
|
|
||
|
|
||
|
def is_torch_mps_available():
|
||
|
if is_torch_available():
|
||
|
import torch
|
||
|
|
||
|
if hasattr(torch.backends, "mps"):
|
||
|
return torch.backends.mps.is_available()
|
||
|
return False
|
||
|
|
||
|
|
||
|
def is_torch_bf16_gpu_available():
|
||
|
if not is_torch_available():
|
||
|
return False
|
||
|
|
||
|
import torch
|
||
|
|
||
|
return torch.cuda.is_available() and torch.cuda.is_bf16_supported()
|
||
|
|
||
|
|
||
|
def is_torch_bf16_cpu_available():
|
||
|
if not is_torch_available():
|
||
|
return False
|
||
|
|
||
|
import torch
|
||
|
|
||
|
try:
|
||
|
# multiple levels of AttributeError depending on the pytorch version so do them all in one check
|
||
|
_ = torch.cpu.amp.autocast
|
||
|
except AttributeError:
|
||
|
return False
|
||
|
|
||
|
return True
|
||
|
|
||
|
|
||
|
def is_torch_bf16_available():
|
||
|
# the original bf16 check was for gpu only, but later a cpu/bf16 combo has emerged so this util
|
||
|
# has become ambiguous and therefore deprecated
|
||
|
warnings.warn(
|
||
|
"The util is_torch_bf16_available is deprecated, please use is_torch_bf16_gpu_available "
|
||
|
"or is_torch_bf16_cpu_available instead according to whether it's used with cpu or gpu",
|
||
|
FutureWarning,
|
||
|
)
|
||
|
return is_torch_bf16_gpu_available()
|
||
|
|
||
|
|
||
|
@lru_cache()
|
||
|
def is_torch_fp16_available_on_device(device):
|
||
|
if not is_torch_available():
|
||
|
return False
|
||
|
|
||
|
import torch
|
||
|
|
||
|
try:
|
||
|
x = torch.zeros(2, 2, dtype=torch.float16).to(device)
|
||
|
_ = x @ x
|
||
|
|
||
|
# At this moment, let's be strict of the check: check if `LayerNorm` is also supported on device, because many
|
||
|
# models use this layer.
|
||
|
batch, sentence_length, embedding_dim = 3, 4, 5
|
||
|
embedding = torch.randn(batch, sentence_length, embedding_dim, dtype=torch.float16, device=device)
|
||
|
layer_norm = torch.nn.LayerNorm(embedding_dim, dtype=torch.float16, device=device)
|
||
|
_ = layer_norm(embedding)
|
||
|
|
||
|
except: # noqa: E722
|
||
|
# TODO: more precise exception matching, if possible.
|
||
|
# most backends should return `RuntimeError` however this is not guaranteed.
|
||
|
return False
|
||
|
|
||
|
return True
|
||
|
|
||
|
|
||
|
@lru_cache()
|
||
|
def is_torch_bf16_available_on_device(device):
|
||
|
if not is_torch_available():
|
||
|
return False
|
||
|
|
||
|
import torch
|
||
|
|
||
|
if device == "cuda":
|
||
|
return is_torch_bf16_gpu_available()
|
||
|
|
||
|
try:
|
||
|
x = torch.zeros(2, 2, dtype=torch.bfloat16).to(device)
|
||
|
_ = x @ x
|
||
|
except: # noqa: E722
|
||
|
# TODO: more precise exception matching, if possible.
|
||
|
# most backends should return `RuntimeError` however this is not guaranteed.
|
||
|
return False
|
||
|
|
||
|
return True
|
||
|
|
||
|
|
||
|
def is_torch_tf32_available():
|
||
|
if not is_torch_available():
|
||
|
return False
|
||
|
|
||
|
import torch
|
||
|
|
||
|
if not torch.cuda.is_available() or torch.version.cuda is None:
|
||
|
return False
|
||
|
if torch.cuda.get_device_properties(torch.cuda.current_device()).major < 8:
|
||
|
return False
|
||
|
if int(torch.version.cuda.split(".")[0]) < 11:
|
||
|
return False
|
||
|
if version.parse(version.parse(torch.__version__).base_version) < version.parse("1.7"):
|
||
|
return False
|
||
|
|
||
|
return True
|
||
|
|
||
|
|
||
|
def is_torch_fx_available():
|
||
|
return _torch_fx_available
|
||
|
|
||
|
|
||
|
def is_peft_available():
|
||
|
return _peft_available
|
||
|
|
||
|
|
||
|
def is_bs4_available():
|
||
|
return _bs4_available
|
||
|
|
||
|
|
||
|
def is_tf_available():
|
||
|
return _tf_available
|
||
|
|
||
|
|
||
|
def is_coloredlogs_available():
|
||
|
return _coloredlogs_available
|
||
|
|
||
|
|
||
|
def is_tf2onnx_available():
|
||
|
return _tf2onnx_available
|
||
|
|
||
|
|
||
|
def is_onnx_available():
|
||
|
return _onnx_available
|
||
|
|
||
|
|
||
|
def is_openai_available():
|
||
|
return _openai_available
|
||
|
|
||
|
|
||
|
def is_flax_available():
|
||
|
return _flax_available
|
||
|
|
||
|
|
||
|
def is_ftfy_available():
|
||
|
return _ftfy_available
|
||
|
|
||
|
|
||
|
def is_g2p_en_available():
|
||
|
return _g2p_en_available
|
||
|
|
||
|
|
||
|
@lru_cache()
|
||
|
def is_torch_tpu_available(check_device=True):
|
||
|
"Checks if `torch_xla` is installed and potentially if a TPU is in the environment"
|
||
|
warnings.warn(
|
||
|
"`is_torch_tpu_available` is deprecated and will be removed in 4.41.0. "
|
||
|
"Please use the `is_torch_xla_available` instead.",
|
||
|
FutureWarning,
|
||
|
)
|
||
|
|
||
|
if not _torch_available:
|
||
|
return False
|
||
|
if importlib.util.find_spec("torch_xla") is not None:
|
||
|
if check_device:
|
||
|
# We need to check if `xla_device` can be found, will raise a RuntimeError if not
|
||
|
try:
|
||
|
import torch_xla.core.xla_model as xm
|
||
|
|
||
|
_ = xm.xla_device()
|
||
|
return True
|
||
|
except RuntimeError:
|
||
|
return False
|
||
|
return True
|
||
|
return False
|
||
|
|
||
|
|
||
|
@lru_cache
|
||
|
def is_torch_xla_available(check_is_tpu=False, check_is_gpu=False):
|
||
|
"""
|
||
|
Check if `torch_xla` is available. To train a native pytorch job in an environment with torch xla installed, set
|
||
|
the USE_TORCH_XLA to false.
|
||
|
"""
|
||
|
assert not (check_is_tpu and check_is_gpu), "The check_is_tpu and check_is_gpu cannot both be true."
|
||
|
|
||
|
if not _torch_xla_available:
|
||
|
return False
|
||
|
|
||
|
import torch_xla
|
||
|
|
||
|
if check_is_gpu:
|
||
|
return torch_xla.runtime.device_type() in ["GPU", "CUDA"]
|
||
|
elif check_is_tpu:
|
||
|
return torch_xla.runtime.device_type() == "TPU"
|
||
|
|
||
|
return True
|
||
|
|
||
|
|
||
|
@lru_cache()
|
||
|
def is_torch_neuroncore_available(check_device=True):
|
||
|
if importlib.util.find_spec("torch_neuronx") is not None:
|
||
|
return is_torch_xla_available()
|
||
|
return False
|
||
|
|
||
|
|
||
|
@lru_cache()
|
||
|
def is_torch_npu_available(check_device=False):
|
||
|
"Checks if `torch_npu` is installed and potentially if a NPU is in the environment"
|
||
|
if not _torch_available or importlib.util.find_spec("torch_npu") is None:
|
||
|
return False
|
||
|
|
||
|
import torch
|
||
|
import torch_npu # noqa: F401
|
||
|
|
||
|
if check_device:
|
||
|
try:
|
||
|
# Will raise a RuntimeError if no NPU is found
|
||
|
_ = torch.npu.device_count()
|
||
|
return torch.npu.is_available()
|
||
|
except RuntimeError:
|
||
|
return False
|
||
|
return hasattr(torch, "npu") and torch.npu.is_available()
|
||
|
|
||
|
|
||
|
@lru_cache()
|
||
|
def is_torch_mlu_available(check_device=False):
|
||
|
"Checks if `torch_mlu` is installed and potentially if a MLU is in the environment"
|
||
|
if not _torch_available or importlib.util.find_spec("torch_mlu") is None:
|
||
|
return False
|
||
|
|
||
|
import torch
|
||
|
import torch_mlu # noqa: F401
|
||
|
|
||
|
from ..dependency_versions_table import deps
|
||
|
|
||
|
deps["deepspeed"] = "deepspeed-mlu>=0.10.1"
|
||
|
|
||
|
if check_device:
|
||
|
try:
|
||
|
# Will raise a RuntimeError if no MLU is found
|
||
|
_ = torch.mlu.device_count()
|
||
|
return torch.mlu.is_available()
|
||
|
except RuntimeError:
|
||
|
return False
|
||
|
return hasattr(torch, "mlu") and torch.mlu.is_available()
|
||
|
|
||
|
|
||
|
def is_torchdynamo_available():
|
||
|
if not is_torch_available():
|
||
|
return False
|
||
|
try:
|
||
|
import torch._dynamo as dynamo # noqa: F401
|
||
|
|
||
|
return True
|
||
|
except Exception:
|
||
|
return False
|
||
|
|
||
|
|
||
|
def is_torch_compile_available():
|
||
|
if not is_torch_available():
|
||
|
return False
|
||
|
|
||
|
import torch
|
||
|
|
||
|
# We don't do any version check here to support nighlies marked as 1.14. Ultimately needs to check version against
|
||
|
# 2.0 but let's do it later.
|
||
|
return hasattr(torch, "compile")
|
||
|
|
||
|
|
||
|
def is_torchdynamo_compiling():
|
||
|
if not is_torch_available():
|
||
|
return False
|
||
|
try:
|
||
|
import torch._dynamo as dynamo # noqa: F401
|
||
|
|
||
|
return dynamo.is_compiling()
|
||
|
except Exception:
|
||
|
return False
|
||
|
|
||
|
|
||
|
def is_torch_tensorrt_fx_available():
|
||
|
if importlib.util.find_spec("torch_tensorrt") is None:
|
||
|
return False
|
||
|
return importlib.util.find_spec("torch_tensorrt.fx") is not None
|
||
|
|
||
|
|
||
|
def is_datasets_available():
|
||
|
return _datasets_available
|
||
|
|
||
|
|
||
|
def is_detectron2_available():
|
||
|
return _detectron2_available
|
||
|
|
||
|
|
||
|
def is_rjieba_available():
|
||
|
return _rjieba_available
|
||
|
|
||
|
|
||
|
def is_psutil_available():
|
||
|
return _psutil_available
|
||
|
|
||
|
|
||
|
def is_py3nvml_available():
|
||
|
return _py3nvml_available
|
||
|
|
||
|
|
||
|
def is_sacremoses_available():
|
||
|
return _sacremoses_available
|
||
|
|
||
|
|
||
|
def is_apex_available():
|
||
|
return _apex_available
|
||
|
|
||
|
|
||
|
def is_aqlm_available():
|
||
|
return _aqlm_available
|
||
|
|
||
|
|
||
|
def is_av_available():
|
||
|
return _av_available
|
||
|
|
||
|
|
||
|
def is_ninja_available():
|
||
|
r"""
|
||
|
Code comes from *torch.utils.cpp_extension.is_ninja_available()*. Returns `True` if the
|
||
|
[ninja](https://ninja-build.org/) build system is available on the system, `False` otherwise.
|
||
|
"""
|
||
|
try:
|
||
|
subprocess.check_output("ninja --version".split())
|
||
|
except Exception:
|
||
|
return False
|
||
|
else:
|
||
|
return True
|
||
|
|
||
|
|
||
|
def is_ipex_available():
|
||
|
def get_major_and_minor_from_version(full_version):
|
||
|
return str(version.parse(full_version).major) + "." + str(version.parse(full_version).minor)
|
||
|
|
||
|
if not is_torch_available() or not _ipex_available:
|
||
|
return False
|
||
|
|
||
|
torch_major_and_minor = get_major_and_minor_from_version(_torch_version)
|
||
|
ipex_major_and_minor = get_major_and_minor_from_version(_ipex_version)
|
||
|
if torch_major_and_minor != ipex_major_and_minor:
|
||
|
logger.warning(
|
||
|
f"Intel Extension for PyTorch {ipex_major_and_minor} needs to work with PyTorch {ipex_major_and_minor}.*,"
|
||
|
f" but PyTorch {_torch_version} is found. Please switch to the matching version and run again."
|
||
|
)
|
||
|
return False
|
||
|
return True
|
||
|
|
||
|
|
||
|
@lru_cache
|
||
|
def is_torch_xpu_available(check_device=False):
|
||
|
"Checks if `intel_extension_for_pytorch` is installed and potentially if a XPU is in the environment"
|
||
|
if not is_ipex_available():
|
||
|
return False
|
||
|
|
||
|
import intel_extension_for_pytorch # noqa: F401
|
||
|
import torch
|
||
|
|
||
|
if check_device:
|
||
|
try:
|
||
|
# Will raise a RuntimeError if no XPU is found
|
||
|
_ = torch.xpu.device_count()
|
||
|
return torch.xpu.is_available()
|
||
|
except RuntimeError:
|
||
|
return False
|
||
|
return hasattr(torch, "xpu") and torch.xpu.is_available()
|
||
|
|
||
|
|
||
|
def is_bitsandbytes_available():
|
||
|
if not is_torch_available():
|
||
|
return False
|
||
|
|
||
|
# bitsandbytes throws an error if cuda is not available
|
||
|
# let's avoid that by adding a simple check
|
||
|
import torch
|
||
|
|
||
|
return _bitsandbytes_available and torch.cuda.is_available()
|
||
|
|
||
|
|
||
|
def is_flash_attn_2_available():
|
||
|
if not is_torch_available():
|
||
|
return False
|
||
|
|
||
|
if not _is_package_available("flash_attn"):
|
||
|
return False
|
||
|
|
||
|
# Let's add an extra check to see if cuda is available
|
||
|
import torch
|
||
|
|
||
|
if not torch.cuda.is_available():
|
||
|
return False
|
||
|
|
||
|
if torch.version.cuda:
|
||
|
return version.parse(importlib.metadata.version("flash_attn")) >= version.parse("2.1.0")
|
||
|
elif torch.version.hip:
|
||
|
# TODO: Bump the requirement to 2.1.0 once released in https://github.com/ROCmSoftwarePlatform/flash-attention
|
||
|
return version.parse(importlib.metadata.version("flash_attn")) >= version.parse("2.0.4")
|
||
|
else:
|
||
|
return False
|
||
|
|
||
|
|
||
|
def is_flash_attn_greater_or_equal_2_10():
|
||
|
if not _is_package_available("flash_attn"):
|
||
|
return False
|
||
|
|
||
|
return version.parse(importlib.metadata.version("flash_attn")) >= version.parse("2.1.0")
|
||
|
|
||
|
|
||
|
def is_torchdistx_available():
|
||
|
return _torchdistx_available
|
||
|
|
||
|
|
||
|
def is_faiss_available():
|
||
|
return _faiss_available
|
||
|
|
||
|
|
||
|
def is_scipy_available():
|
||
|
return _scipy_available
|
||
|
|
||
|
|
||
|
def is_sklearn_available():
|
||
|
return _sklearn_available
|
||
|
|
||
|
|
||
|
def is_sentencepiece_available():
|
||
|
return _sentencepiece_available
|
||
|
|
||
|
|
||
|
def is_seqio_available():
|
||
|
return _is_seqio_available
|
||
|
|
||
|
|
||
|
def is_protobuf_available():
|
||
|
if importlib.util.find_spec("google") is None:
|
||
|
return False
|
||
|
return importlib.util.find_spec("google.protobuf") is not None
|
||
|
|
||
|
|
||
|
def is_accelerate_available(min_version: str = ACCELERATE_MIN_VERSION):
|
||
|
return _accelerate_available and version.parse(_accelerate_version) >= version.parse(min_version)
|
||
|
|
||
|
|
||
|
def is_fsdp_available(min_version: str = FSDP_MIN_VERSION):
|
||
|
return is_torch_available() and version.parse(_torch_version) >= version.parse(min_version)
|
||
|
|
||
|
|
||
|
def is_optimum_available():
|
||
|
return _optimum_available
|
||
|
|
||
|
|
||
|
def is_auto_awq_available():
|
||
|
return _auto_awq_available
|
||
|
|
||
|
|
||
|
def is_quanto_available():
|
||
|
return _quanto_available
|
||
|
|
||
|
|
||
|
def is_auto_gptq_available():
|
||
|
return _auto_gptq_available
|
||
|
|
||
|
|
||
|
def is_levenshtein_available():
|
||
|
return _levenshtein_available
|
||
|
|
||
|
|
||
|
def is_optimum_neuron_available():
|
||
|
return _optimum_available and _is_package_available("optimum.neuron")
|
||
|
|
||
|
|
||
|
def is_safetensors_available():
|
||
|
return _safetensors_available
|
||
|
|
||
|
|
||
|
def is_tokenizers_available():
|
||
|
return _tokenizers_available
|
||
|
|
||
|
|
||
|
@lru_cache
|
||
|
def is_vision_available():
|
||
|
_pil_available = importlib.util.find_spec("PIL") is not None
|
||
|
if _pil_available:
|
||
|
try:
|
||
|
package_version = importlib.metadata.version("Pillow")
|
||
|
except importlib.metadata.PackageNotFoundError:
|
||
|
try:
|
||
|
package_version = importlib.metadata.version("Pillow-SIMD")
|
||
|
except importlib.metadata.PackageNotFoundError:
|
||
|
return False
|
||
|
logger.debug(f"Detected PIL version {package_version}")
|
||
|
return _pil_available
|
||
|
|
||
|
|
||
|
def is_pytesseract_available():
|
||
|
return _pytesseract_available
|
||
|
|
||
|
|
||
|
def is_pytest_available():
|
||
|
return _pytest_available
|
||
|
|
||
|
|
||
|
def is_spacy_available():
|
||
|
return _spacy_available
|
||
|
|
||
|
|
||
|
def is_tensorflow_text_available():
|
||
|
return is_tf_available() and _tensorflow_text_available
|
||
|
|
||
|
|
||
|
def is_keras_nlp_available():
|
||
|
return is_tensorflow_text_available() and _keras_nlp_available
|
||
|
|
||
|
|
||
|
def is_in_notebook():
|
||
|
try:
|
||
|
# Test adapted from tqdm.autonotebook: https://github.com/tqdm/tqdm/blob/master/tqdm/autonotebook.py
|
||
|
get_ipython = sys.modules["IPython"].get_ipython
|
||
|
if "IPKernelApp" not in get_ipython().config:
|
||
|
raise ImportError("console")
|
||
|
if "VSCODE_PID" in os.environ:
|
||
|
raise ImportError("vscode")
|
||
|
if "DATABRICKS_RUNTIME_VERSION" in os.environ and os.environ["DATABRICKS_RUNTIME_VERSION"] < "11.0":
|
||
|
# Databricks Runtime 11.0 and above uses IPython kernel by default so it should be compatible with Jupyter notebook
|
||
|
# https://docs.microsoft.com/en-us/azure/databricks/notebooks/ipython-kernel
|
||
|
raise ImportError("databricks")
|
||
|
|
||
|
return importlib.util.find_spec("IPython") is not None
|
||
|
except (AttributeError, ImportError, KeyError):
|
||
|
return False
|
||
|
|
||
|
|
||
|
def is_pytorch_quantization_available():
|
||
|
return _pytorch_quantization_available
|
||
|
|
||
|
|
||
|
def is_tensorflow_probability_available():
|
||
|
return _tensorflow_probability_available
|
||
|
|
||
|
|
||
|
def is_pandas_available():
|
||
|
return _pandas_available
|
||
|
|
||
|
|
||
|
def is_sagemaker_dp_enabled():
|
||
|
# Get the sagemaker specific env variable.
|
||
|
sagemaker_params = os.getenv("SM_FRAMEWORK_PARAMS", "{}")
|
||
|
try:
|
||
|
# Parse it and check the field "sagemaker_distributed_dataparallel_enabled".
|
||
|
sagemaker_params = json.loads(sagemaker_params)
|
||
|
if not sagemaker_params.get("sagemaker_distributed_dataparallel_enabled", False):
|
||
|
return False
|
||
|
except json.JSONDecodeError:
|
||
|
return False
|
||
|
# Lastly, check if the `smdistributed` module is present.
|
||
|
return _smdistributed_available
|
||
|
|
||
|
|
||
|
def is_sagemaker_mp_enabled():
|
||
|
# Get the sagemaker specific mp parameters from smp_options variable.
|
||
|
smp_options = os.getenv("SM_HP_MP_PARAMETERS", "{}")
|
||
|
try:
|
||
|
# Parse it and check the field "partitions" is included, it is required for model parallel.
|
||
|
smp_options = json.loads(smp_options)
|
||
|
if "partitions" not in smp_options:
|
||
|
return False
|
||
|
except json.JSONDecodeError:
|
||
|
return False
|
||
|
|
||
|
# Get the sagemaker specific framework parameters from mpi_options variable.
|
||
|
mpi_options = os.getenv("SM_FRAMEWORK_PARAMS", "{}")
|
||
|
try:
|
||
|
# Parse it and check the field "sagemaker_distributed_dataparallel_enabled".
|
||
|
mpi_options = json.loads(mpi_options)
|
||
|
if not mpi_options.get("sagemaker_mpi_enabled", False):
|
||
|
return False
|
||
|
except json.JSONDecodeError:
|
||
|
return False
|
||
|
# Lastly, check if the `smdistributed` module is present.
|
||
|
return _smdistributed_available
|
||
|
|
||
|
|
||
|
def is_training_run_on_sagemaker():
|
||
|
return "SAGEMAKER_JOB_NAME" in os.environ
|
||
|
|
||
|
|
||
|
def is_soundfile_availble():
|
||
|
return _soundfile_available
|
||
|
|
||
|
|
||
|
def is_timm_available():
|
||
|
return _timm_available
|
||
|
|
||
|
|
||
|
def is_natten_available():
|
||
|
return _natten_available
|
||
|
|
||
|
|
||
|
def is_nltk_available():
|
||
|
return _nltk_available
|
||
|
|
||
|
|
||
|
def is_torchaudio_available():
|
||
|
return _torchaudio_available
|
||
|
|
||
|
|
||
|
def is_speech_available():
|
||
|
# For now this depends on torchaudio but the exact dependency might evolve in the future.
|
||
|
return _torchaudio_available
|
||
|
|
||
|
|
||
|
def is_phonemizer_available():
|
||
|
return _phonemizer_available
|
||
|
|
||
|
|
||
|
def torch_only_method(fn):
|
||
|
def wrapper(*args, **kwargs):
|
||
|
if not _torch_available:
|
||
|
raise ImportError(
|
||
|
"You need to install pytorch to use this method or class, "
|
||
|
"or activate it with environment variables USE_TORCH=1 and USE_TF=0."
|
||
|
)
|
||
|
else:
|
||
|
return fn(*args, **kwargs)
|
||
|
|
||
|
return wrapper
|
||
|
|
||
|
|
||
|
def is_ccl_available():
|
||
|
return _is_ccl_available
|
||
|
|
||
|
|
||
|
def is_decord_available():
|
||
|
return _decord_available
|
||
|
|
||
|
|
||
|
def is_sudachi_available():
|
||
|
return _sudachipy_available
|
||
|
|
||
|
|
||
|
def get_sudachi_version():
|
||
|
return _sudachipy_version
|
||
|
|
||
|
|
||
|
def is_sudachi_projection_available():
|
||
|
if not is_sudachi_available():
|
||
|
return False
|
||
|
|
||
|
# NOTE: We require sudachipy>=0.6.8 to use projection option in sudachi_kwargs for the constructor of BertJapaneseTokenizer.
|
||
|
# - `projection` option is not supported in sudachipy<0.6.8, see https://github.com/WorksApplications/sudachi.rs/issues/230
|
||
|
return version.parse(_sudachipy_version) >= version.parse("0.6.8")
|
||
|
|
||
|
|
||
|
def is_jumanpp_available():
|
||
|
return (importlib.util.find_spec("rhoknp") is not None) and (shutil.which("jumanpp") is not None)
|
||
|
|
||
|
|
||
|
def is_cython_available():
|
||
|
return importlib.util.find_spec("pyximport") is not None
|
||
|
|
||
|
|
||
|
def is_jieba_available():
|
||
|
return _jieba_available
|
||
|
|
||
|
|
||
|
def is_jinja_available():
|
||
|
return _jinja_available
|
||
|
|
||
|
|
||
|
def is_mlx_available():
|
||
|
return _mlx_available
|
||
|
|
||
|
|
||
|
# docstyle-ignore
|
||
|
AV_IMPORT_ERROR = """
|
||
|
{0} requires the PyAv library but it was not found in your environment. You can install it with:
|
||
|
```
|
||
|
pip install av
|
||
|
```
|
||
|
Please note that you may need to restart your runtime after installation.
|
||
|
"""
|
||
|
|
||
|
|
||
|
# docstyle-ignore
|
||
|
CV2_IMPORT_ERROR = """
|
||
|
{0} requires the OpenCV library but it was not found in your environment. You can install it with:
|
||
|
```
|
||
|
pip install opencv-python
|
||
|
```
|
||
|
Please note that you may need to restart your runtime after installation.
|
||
|
"""
|
||
|
|
||
|
|
||
|
# docstyle-ignore
|
||
|
DATASETS_IMPORT_ERROR = """
|
||
|
{0} requires the 🤗 Datasets library but it was not found in your environment. You can install it with:
|
||
|
```
|
||
|
pip install datasets
|
||
|
```
|
||
|
In a notebook or a colab, you can install it by executing a cell with
|
||
|
```
|
||
|
!pip install datasets
|
||
|
```
|
||
|
then restarting your kernel.
|
||
|
|
||
|
Note that if you have a local folder named `datasets` or a local python file named `datasets.py` in your current
|
||
|
working directory, python may try to import this instead of the 🤗 Datasets library. You should rename this folder or
|
||
|
that python file if that's the case. Please note that you may need to restart your runtime after installation.
|
||
|
"""
|
||
|
|
||
|
|
||
|
# docstyle-ignore
|
||
|
TOKENIZERS_IMPORT_ERROR = """
|
||
|
{0} requires the 🤗 Tokenizers library but it was not found in your environment. You can install it with:
|
||
|
```
|
||
|
pip install tokenizers
|
||
|
```
|
||
|
In a notebook or a colab, you can install it by executing a cell with
|
||
|
```
|
||
|
!pip install tokenizers
|
||
|
```
|
||
|
Please note that you may need to restart your runtime after installation.
|
||
|
"""
|
||
|
|
||
|
|
||
|
# docstyle-ignore
|
||
|
SENTENCEPIECE_IMPORT_ERROR = """
|
||
|
{0} requires the SentencePiece library but it was not found in your environment. Checkout the instructions on the
|
||
|
installation page of its repo: https://github.com/google/sentencepiece#installation and follow the ones
|
||
|
that match your environment. Please note that you may need to restart your runtime after installation.
|
||
|
"""
|
||
|
|
||
|
|
||
|
# docstyle-ignore
|
||
|
PROTOBUF_IMPORT_ERROR = """
|
||
|
{0} requires the protobuf library but it was not found in your environment. Checkout the instructions on the
|
||
|
installation page of its repo: https://github.com/protocolbuffers/protobuf/tree/master/python#installation and follow the ones
|
||
|
that match your environment. Please note that you may need to restart your runtime after installation.
|
||
|
"""
|
||
|
|
||
|
|
||
|
# docstyle-ignore
|
||
|
FAISS_IMPORT_ERROR = """
|
||
|
{0} requires the faiss library but it was not found in your environment. Checkout the instructions on the
|
||
|
installation page of its repo: https://github.com/facebookresearch/faiss/blob/master/INSTALL.md and follow the ones
|
||
|
that match your environment. Please note that you may need to restart your runtime after installation.
|
||
|
"""
|
||
|
|
||
|
|
||
|
# docstyle-ignore
|
||
|
PYTORCH_IMPORT_ERROR = """
|
||
|
{0} requires the PyTorch library but it was not found in your environment. Checkout the instructions on the
|
||
|
installation page: https://pytorch.org/get-started/locally/ and follow the ones that match your environment.
|
||
|
Please note that you may need to restart your runtime after installation.
|
||
|
"""
|
||
|
|
||
|
|
||
|
# docstyle-ignore
|
||
|
TORCHVISION_IMPORT_ERROR = """
|
||
|
{0} requires the Torchvision library but it was not found in your environment. Checkout the instructions on the
|
||
|
installation page: https://pytorch.org/get-started/locally/ and follow the ones that match your environment.
|
||
|
Please note that you may need to restart your runtime after installation.
|
||
|
"""
|
||
|
|
||
|
# docstyle-ignore
|
||
|
PYTORCH_IMPORT_ERROR_WITH_TF = """
|
||
|
{0} requires the PyTorch library but it was not found in your environment.
|
||
|
However, we were able to find a TensorFlow installation. TensorFlow classes begin
|
||
|
with "TF", but are otherwise identically named to our PyTorch classes. This
|
||
|
means that the TF equivalent of the class you tried to import would be "TF{0}".
|
||
|
If you want to use TensorFlow, please use TF classes instead!
|
||
|
|
||
|
If you really do want to use PyTorch please go to
|
||
|
https://pytorch.org/get-started/locally/ and follow the instructions that
|
||
|
match your environment.
|
||
|
"""
|
||
|
|
||
|
# docstyle-ignore
|
||
|
TF_IMPORT_ERROR_WITH_PYTORCH = """
|
||
|
{0} requires the TensorFlow library but it was not found in your environment.
|
||
|
However, we were able to find a PyTorch installation. PyTorch classes do not begin
|
||
|
with "TF", but are otherwise identically named to our TF classes.
|
||
|
If you want to use PyTorch, please use those classes instead!
|
||
|
|
||
|
If you really do want to use TensorFlow, please follow the instructions on the
|
||
|
installation page https://www.tensorflow.org/install that match your environment.
|
||
|
"""
|
||
|
|
||
|
# docstyle-ignore
|
||
|
BS4_IMPORT_ERROR = """
|
||
|
{0} requires the Beautiful Soup library but it was not found in your environment. You can install it with pip:
|
||
|
`pip install beautifulsoup4`. Please note that you may need to restart your runtime after installation.
|
||
|
"""
|
||
|
|
||
|
|
||
|
# docstyle-ignore
|
||
|
SKLEARN_IMPORT_ERROR = """
|
||
|
{0} requires the scikit-learn library but it was not found in your environment. You can install it with:
|
||
|
```
|
||
|
pip install -U scikit-learn
|
||
|
```
|
||
|
In a notebook or a colab, you can install it by executing a cell with
|
||
|
```
|
||
|
!pip install -U scikit-learn
|
||
|
```
|
||
|
Please note that you may need to restart your runtime after installation.
|
||
|
"""
|
||
|
|
||
|
|
||
|
# docstyle-ignore
|
||
|
TENSORFLOW_IMPORT_ERROR = """
|
||
|
{0} requires the TensorFlow library but it was not found in your environment. Checkout the instructions on the
|
||
|
installation page: https://www.tensorflow.org/install and follow the ones that match your environment.
|
||
|
Please note that you may need to restart your runtime after installation.
|
||
|
"""
|
||
|
|
||
|
|
||
|
# docstyle-ignore
|
||
|
DETECTRON2_IMPORT_ERROR = """
|
||
|
{0} requires the detectron2 library but it was not found in your environment. Checkout the instructions on the
|
||
|
installation page: https://github.com/facebookresearch/detectron2/blob/master/INSTALL.md and follow the ones
|
||
|
that match your environment. Please note that you may need to restart your runtime after installation.
|
||
|
"""
|
||
|
|
||
|
|
||
|
# docstyle-ignore
|
||
|
FLAX_IMPORT_ERROR = """
|
||
|
{0} requires the FLAX library but it was not found in your environment. Checkout the instructions on the
|
||
|
installation page: https://github.com/google/flax and follow the ones that match your environment.
|
||
|
Please note that you may need to restart your runtime after installation.
|
||
|
"""
|
||
|
|
||
|
# docstyle-ignore
|
||
|
FTFY_IMPORT_ERROR = """
|
||
|
{0} requires the ftfy library but it was not found in your environment. Checkout the instructions on the
|
||
|
installation section: https://github.com/rspeer/python-ftfy/tree/master#installing and follow the ones
|
||
|
that match your environment. Please note that you may need to restart your runtime after installation.
|
||
|
"""
|
||
|
|
||
|
LEVENSHTEIN_IMPORT_ERROR = """
|
||
|
{0} requires the python-Levenshtein library but it was not found in your environment. You can install it with pip: `pip
|
||
|
install python-Levenshtein`. Please note that you may need to restart your runtime after installation.
|
||
|
"""
|
||
|
|
||
|
# docstyle-ignore
|
||
|
G2P_EN_IMPORT_ERROR = """
|
||
|
{0} requires the g2p-en library but it was not found in your environment. You can install it with pip:
|
||
|
`pip install g2p-en`. Please note that you may need to restart your runtime after installation.
|
||
|
"""
|
||
|
|
||
|
# docstyle-ignore
|
||
|
PYTORCH_QUANTIZATION_IMPORT_ERROR = """
|
||
|
{0} requires the pytorch-quantization library but it was not found in your environment. You can install it with pip:
|
||
|
`pip install pytorch-quantization --extra-index-url https://pypi.ngc.nvidia.com`
|
||
|
Please note that you may need to restart your runtime after installation.
|
||
|
"""
|
||
|
|
||
|
# docstyle-ignore
|
||
|
TENSORFLOW_PROBABILITY_IMPORT_ERROR = """
|
||
|
{0} requires the tensorflow_probability library but it was not found in your environment. You can install it with pip as
|
||
|
explained here: https://github.com/tensorflow/probability. Please note that you may need to restart your runtime after installation.
|
||
|
"""
|
||
|
|
||
|
# docstyle-ignore
|
||
|
TENSORFLOW_TEXT_IMPORT_ERROR = """
|
||
|
{0} requires the tensorflow_text library but it was not found in your environment. You can install it with pip as
|
||
|
explained here: https://www.tensorflow.org/text/guide/tf_text_intro.
|
||
|
Please note that you may need to restart your runtime after installation.
|
||
|
"""
|
||
|
|
||
|
|
||
|
# docstyle-ignore
|
||
|
PANDAS_IMPORT_ERROR = """
|
||
|
{0} requires the pandas library but it was not found in your environment. You can install it with pip as
|
||
|
explained here: https://pandas.pydata.org/pandas-docs/stable/getting_started/install.html.
|
||
|
Please note that you may need to restart your runtime after installation.
|
||
|
"""
|
||
|
|
||
|
|
||
|
# docstyle-ignore
|
||
|
PHONEMIZER_IMPORT_ERROR = """
|
||
|
{0} requires the phonemizer library but it was not found in your environment. You can install it with pip:
|
||
|
`pip install phonemizer`. Please note that you may need to restart your runtime after installation.
|
||
|
"""
|
||
|
|
||
|
|
||
|
# docstyle-ignore
|
||
|
SACREMOSES_IMPORT_ERROR = """
|
||
|
{0} requires the sacremoses library but it was not found in your environment. You can install it with pip:
|
||
|
`pip install sacremoses`. Please note that you may need to restart your runtime after installation.
|
||
|
"""
|
||
|
|
||
|
# docstyle-ignore
|
||
|
SCIPY_IMPORT_ERROR = """
|
||
|
{0} requires the scipy library but it was not found in your environment. You can install it with pip:
|
||
|
`pip install scipy`. Please note that you may need to restart your runtime after installation.
|
||
|
"""
|
||
|
|
||
|
|
||
|
# docstyle-ignore
|
||
|
SPEECH_IMPORT_ERROR = """
|
||
|
{0} requires the torchaudio library but it was not found in your environment. You can install it with pip:
|
||
|
`pip install torchaudio`. Please note that you may need to restart your runtime after installation.
|
||
|
"""
|
||
|
|
||
|
# docstyle-ignore
|
||
|
TIMM_IMPORT_ERROR = """
|
||
|
{0} requires the timm library but it was not found in your environment. You can install it with pip:
|
||
|
`pip install timm`. Please note that you may need to restart your runtime after installation.
|
||
|
"""
|
||
|
|
||
|
# docstyle-ignore
|
||
|
NATTEN_IMPORT_ERROR = """
|
||
|
{0} requires the natten library but it was not found in your environment. You can install it by referring to:
|
||
|
shi-labs.com/natten . You can also install it with pip (may take longer to build):
|
||
|
`pip install natten`. Please note that you may need to restart your runtime after installation.
|
||
|
"""
|
||
|
|
||
|
|
||
|
# docstyle-ignore
|
||
|
NLTK_IMPORT_ERROR = """
|
||
|
{0} requires the NLTK library but it was not found in your environment. You can install it by referring to:
|
||
|
https://www.nltk.org/install.html. Please note that you may need to restart your runtime after installation.
|
||
|
"""
|
||
|
|
||
|
|
||
|
# docstyle-ignore
|
||
|
VISION_IMPORT_ERROR = """
|
||
|
{0} requires the PIL library but it was not found in your environment. You can install it with pip:
|
||
|
`pip install pillow`. Please note that you may need to restart your runtime after installation.
|
||
|
"""
|
||
|
|
||
|
|
||
|
# docstyle-ignore
|
||
|
PYTESSERACT_IMPORT_ERROR = """
|
||
|
{0} requires the PyTesseract library but it was not found in your environment. You can install it with pip:
|
||
|
`pip install pytesseract`. Please note that you may need to restart your runtime after installation.
|
||
|
"""
|
||
|
|
||
|
# docstyle-ignore
|
||
|
PYCTCDECODE_IMPORT_ERROR = """
|
||
|
{0} requires the pyctcdecode library but it was not found in your environment. You can install it with pip:
|
||
|
`pip install pyctcdecode`. Please note that you may need to restart your runtime after installation.
|
||
|
"""
|
||
|
|
||
|
# docstyle-ignore
|
||
|
ACCELERATE_IMPORT_ERROR = """
|
||
|
{0} requires the accelerate library >= {ACCELERATE_MIN_VERSION} it was not found in your environment.
|
||
|
You can install or update it with pip: `pip install --upgrade accelerate`. Please note that you may need to restart your
|
||
|
runtime after installation.
|
||
|
"""
|
||
|
|
||
|
# docstyle-ignore
|
||
|
CCL_IMPORT_ERROR = """
|
||
|
{0} requires the torch ccl library but it was not found in your environment. You can install it with pip:
|
||
|
`pip install oneccl_bind_pt -f https://developer.intel.com/ipex-whl-stable`
|
||
|
Please note that you may need to restart your runtime after installation.
|
||
|
"""
|
||
|
|
||
|
# docstyle-ignore
|
||
|
ESSENTIA_IMPORT_ERROR = """
|
||
|
{0} requires essentia library. But that was not found in your environment. You can install them with pip:
|
||
|
`pip install essentia==2.1b6.dev1034`
|
||
|
Please note that you may need to restart your runtime after installation.
|
||
|
"""
|
||
|
|
||
|
# docstyle-ignore
|
||
|
LIBROSA_IMPORT_ERROR = """
|
||
|
{0} requires thes librosa library. But that was not found in your environment. You can install them with pip:
|
||
|
`pip install librosa`
|
||
|
Please note that you may need to restart your runtime after installation.
|
||
|
"""
|
||
|
|
||
|
# docstyle-ignore
|
||
|
PRETTY_MIDI_IMPORT_ERROR = """
|
||
|
{0} requires thes pretty_midi library. But that was not found in your environment. You can install them with pip:
|
||
|
`pip install pretty_midi`
|
||
|
Please note that you may need to restart your runtime after installation.
|
||
|
"""
|
||
|
|
||
|
DECORD_IMPORT_ERROR = """
|
||
|
{0} requires the decord library but it was not found in your environment. You can install it with pip: `pip install
|
||
|
decord`. Please note that you may need to restart your runtime after installation.
|
||
|
"""
|
||
|
|
||
|
CYTHON_IMPORT_ERROR = """
|
||
|
{0} requires the Cython library but it was not found in your environment. You can install it with pip: `pip install
|
||
|
Cython`. Please note that you may need to restart your runtime after installation.
|
||
|
"""
|
||
|
|
||
|
JIEBA_IMPORT_ERROR = """
|
||
|
{0} requires the jieba library but it was not found in your environment. You can install it with pip: `pip install
|
||
|
jieba`. Please note that you may need to restart your runtime after installation.
|
||
|
"""
|
||
|
|
||
|
PEFT_IMPORT_ERROR = """
|
||
|
{0} requires the peft library but it was not found in your environment. You can install it with pip: `pip install
|
||
|
peft`. Please note that you may need to restart your runtime after installation.
|
||
|
"""
|
||
|
|
||
|
JINJA_IMPORT_ERROR = """
|
||
|
{0} requires the jinja library but it was not found in your environment. You can install it with pip: `pip install
|
||
|
jinja2`. Please note that you may need to restart your runtime after installation.
|
||
|
"""
|
||
|
|
||
|
BACKENDS_MAPPING = OrderedDict(
|
||
|
[
|
||
|
("av", (is_av_available, AV_IMPORT_ERROR)),
|
||
|
("bs4", (is_bs4_available, BS4_IMPORT_ERROR)),
|
||
|
("cv2", (is_cv2_available, CV2_IMPORT_ERROR)),
|
||
|
("datasets", (is_datasets_available, DATASETS_IMPORT_ERROR)),
|
||
|
("detectron2", (is_detectron2_available, DETECTRON2_IMPORT_ERROR)),
|
||
|
("essentia", (is_essentia_available, ESSENTIA_IMPORT_ERROR)),
|
||
|
("faiss", (is_faiss_available, FAISS_IMPORT_ERROR)),
|
||
|
("flax", (is_flax_available, FLAX_IMPORT_ERROR)),
|
||
|
("ftfy", (is_ftfy_available, FTFY_IMPORT_ERROR)),
|
||
|
("g2p_en", (is_g2p_en_available, G2P_EN_IMPORT_ERROR)),
|
||
|
("pandas", (is_pandas_available, PANDAS_IMPORT_ERROR)),
|
||
|
("phonemizer", (is_phonemizer_available, PHONEMIZER_IMPORT_ERROR)),
|
||
|
("pretty_midi", (is_pretty_midi_available, PRETTY_MIDI_IMPORT_ERROR)),
|
||
|
("levenshtein", (is_levenshtein_available, LEVENSHTEIN_IMPORT_ERROR)),
|
||
|
("librosa", (is_librosa_available, LIBROSA_IMPORT_ERROR)),
|
||
|
("protobuf", (is_protobuf_available, PROTOBUF_IMPORT_ERROR)),
|
||
|
("pyctcdecode", (is_pyctcdecode_available, PYCTCDECODE_IMPORT_ERROR)),
|
||
|
("pytesseract", (is_pytesseract_available, PYTESSERACT_IMPORT_ERROR)),
|
||
|
("sacremoses", (is_sacremoses_available, SACREMOSES_IMPORT_ERROR)),
|
||
|
("pytorch_quantization", (is_pytorch_quantization_available, PYTORCH_QUANTIZATION_IMPORT_ERROR)),
|
||
|
("sentencepiece", (is_sentencepiece_available, SENTENCEPIECE_IMPORT_ERROR)),
|
||
|
("sklearn", (is_sklearn_available, SKLEARN_IMPORT_ERROR)),
|
||
|
("speech", (is_speech_available, SPEECH_IMPORT_ERROR)),
|
||
|
("tensorflow_probability", (is_tensorflow_probability_available, TENSORFLOW_PROBABILITY_IMPORT_ERROR)),
|
||
|
("tf", (is_tf_available, TENSORFLOW_IMPORT_ERROR)),
|
||
|
("tensorflow_text", (is_tensorflow_text_available, TENSORFLOW_TEXT_IMPORT_ERROR)),
|
||
|
("timm", (is_timm_available, TIMM_IMPORT_ERROR)),
|
||
|
("natten", (is_natten_available, NATTEN_IMPORT_ERROR)),
|
||
|
("nltk", (is_nltk_available, NLTK_IMPORT_ERROR)),
|
||
|
("tokenizers", (is_tokenizers_available, TOKENIZERS_IMPORT_ERROR)),
|
||
|
("torch", (is_torch_available, PYTORCH_IMPORT_ERROR)),
|
||
|
("torchvision", (is_torchvision_available, TORCHVISION_IMPORT_ERROR)),
|
||
|
("vision", (is_vision_available, VISION_IMPORT_ERROR)),
|
||
|
("scipy", (is_scipy_available, SCIPY_IMPORT_ERROR)),
|
||
|
("accelerate", (is_accelerate_available, ACCELERATE_IMPORT_ERROR)),
|
||
|
("oneccl_bind_pt", (is_ccl_available, CCL_IMPORT_ERROR)),
|
||
|
("decord", (is_decord_available, DECORD_IMPORT_ERROR)),
|
||
|
("cython", (is_cython_available, CYTHON_IMPORT_ERROR)),
|
||
|
("jieba", (is_jieba_available, JIEBA_IMPORT_ERROR)),
|
||
|
("peft", (is_peft_available, PEFT_IMPORT_ERROR)),
|
||
|
("jinja", (is_jinja_available, JINJA_IMPORT_ERROR)),
|
||
|
]
|
||
|
)
|
||
|
|
||
|
|
||
|
def requires_backends(obj, backends):
|
||
|
if not isinstance(backends, (list, tuple)):
|
||
|
backends = [backends]
|
||
|
|
||
|
name = obj.__name__ if hasattr(obj, "__name__") else obj.__class__.__name__
|
||
|
|
||
|
# Raise an error for users who might not realize that classes without "TF" are torch-only
|
||
|
if "torch" in backends and "tf" not in backends and not is_torch_available() and is_tf_available():
|
||
|
raise ImportError(PYTORCH_IMPORT_ERROR_WITH_TF.format(name))
|
||
|
|
||
|
# Raise the inverse error for PyTorch users trying to load TF classes
|
||
|
if "tf" in backends and "torch" not in backends and is_torch_available() and not is_tf_available():
|
||
|
raise ImportError(TF_IMPORT_ERROR_WITH_PYTORCH.format(name))
|
||
|
|
||
|
checks = (BACKENDS_MAPPING[backend] for backend in backends)
|
||
|
failed = [msg.format(name) for available, msg in checks if not available()]
|
||
|
if failed:
|
||
|
raise ImportError("".join(failed))
|
||
|
|
||
|
|
||
|
class DummyObject(type):
|
||
|
"""
|
||
|
Metaclass for the dummy objects. Any class inheriting from it will return the ImportError generated by
|
||
|
`requires_backend` each time a user tries to access any method of that class.
|
||
|
"""
|
||
|
|
||
|
def __getattribute__(cls, key):
|
||
|
if key.startswith("_") and key != "_from_config":
|
||
|
return super().__getattribute__(key)
|
||
|
requires_backends(cls, cls._backends)
|
||
|
|
||
|
|
||
|
def is_torch_fx_proxy(x):
|
||
|
if is_torch_fx_available():
|
||
|
import torch.fx
|
||
|
|
||
|
return isinstance(x, torch.fx.Proxy)
|
||
|
return False
|
||
|
|
||
|
|
||
|
class _LazyModule(ModuleType):
|
||
|
"""
|
||
|
Module class that surfaces all objects but only performs associated imports when the objects are requested.
|
||
|
"""
|
||
|
|
||
|
# Very heavily inspired by optuna.integration._IntegrationModule
|
||
|
# https://github.com/optuna/optuna/blob/master/optuna/integration/__init__.py
|
||
|
def __init__(self, name, module_file, import_structure, module_spec=None, extra_objects=None):
|
||
|
super().__init__(name)
|
||
|
self._modules = set(import_structure.keys())
|
||
|
self._class_to_module = {}
|
||
|
for key, values in import_structure.items():
|
||
|
for value in values:
|
||
|
self._class_to_module[value] = key
|
||
|
# Needed for autocompletion in an IDE
|
||
|
self.__all__ = list(import_structure.keys()) + list(chain(*import_structure.values()))
|
||
|
self.__file__ = module_file
|
||
|
self.__spec__ = module_spec
|
||
|
self.__path__ = [os.path.dirname(module_file)]
|
||
|
self._objects = {} if extra_objects is None else extra_objects
|
||
|
self._name = name
|
||
|
self._import_structure = import_structure
|
||
|
|
||
|
# Needed for autocompletion in an IDE
|
||
|
def __dir__(self):
|
||
|
result = super().__dir__()
|
||
|
# The elements of self.__all__ that are submodules may or may not be in the dir already, depending on whether
|
||
|
# they have been accessed or not. So we only add the elements of self.__all__ that are not already in the dir.
|
||
|
for attr in self.__all__:
|
||
|
if attr not in result:
|
||
|
result.append(attr)
|
||
|
return result
|
||
|
|
||
|
def __getattr__(self, name: str) -> Any:
|
||
|
if name in self._objects:
|
||
|
return self._objects[name]
|
||
|
if name in self._modules:
|
||
|
value = self._get_module(name)
|
||
|
elif name in self._class_to_module.keys():
|
||
|
module = self._get_module(self._class_to_module[name])
|
||
|
value = getattr(module, name)
|
||
|
else:
|
||
|
raise AttributeError(f"module {self.__name__} has no attribute {name}")
|
||
|
|
||
|
setattr(self, name, value)
|
||
|
return value
|
||
|
|
||
|
def _get_module(self, module_name: str):
|
||
|
try:
|
||
|
return importlib.import_module("." + module_name, self.__name__)
|
||
|
except Exception as e:
|
||
|
raise RuntimeError(
|
||
|
f"Failed to import {self.__name__}.{module_name} because of the following error (look up to see its"
|
||
|
f" traceback):\n{e}"
|
||
|
) from e
|
||
|
|
||
|
def __reduce__(self):
|
||
|
return (self.__class__, (self._name, self.__file__, self._import_structure))
|
||
|
|
||
|
|
||
|
class OptionalDependencyNotAvailable(BaseException):
|
||
|
"""Internally used error class for signalling an optional dependency was not found."""
|
||
|
|
||
|
|
||
|
def direct_transformers_import(path: str, file="__init__.py") -> ModuleType:
|
||
|
"""Imports transformers directly
|
||
|
|
||
|
Args:
|
||
|
path (`str`): The path to the source file
|
||
|
file (`str`, optional): The file to join with the path. Defaults to "__init__.py".
|
||
|
|
||
|
Returns:
|
||
|
`ModuleType`: The resulting imported module
|
||
|
"""
|
||
|
name = "transformers"
|
||
|
location = os.path.join(path, file)
|
||
|
spec = importlib.util.spec_from_file_location(name, location, submodule_search_locations=[path])
|
||
|
module = importlib.util.module_from_spec(spec)
|
||
|
spec.loader.exec_module(module)
|
||
|
module = sys.modules[name]
|
||
|
return module
|