ai-content-maker/.venv/Lib/site-packages/matplotlib/transforms.pyi

336 lines
12 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
from .path import Path
from .patches import Patch
from .figure import Figure
import numpy as np
from numpy.typing import ArrayLike
from collections.abc import Iterable, Sequence
from typing import Literal
DEBUG: bool
class TransformNode:
INVALID_NON_AFFINE: int
INVALID_AFFINE: int
INVALID: int
is_bbox: bool
# Implemented as a standard attr in base class, but functionally readonly and some subclasses implement as such
@property
def is_affine(self) -> bool: ...
pass_through: bool
def __init__(self, shorthand_name: str | None = ...) -> None: ...
def __copy__(self) -> TransformNode: ...
def invalidate(self) -> None: ...
def set_children(self, *children: TransformNode) -> None: ...
def frozen(self) -> TransformNode: ...
class BboxBase(TransformNode):
is_bbox: bool
is_affine: bool
def frozen(self) -> Bbox: ...
def __array__(self, *args, **kwargs): ...
@property
def x0(self) -> float: ...
@property
def y0(self) -> float: ...
@property
def x1(self) -> float: ...
@property
def y1(self) -> float: ...
@property
def p0(self) -> tuple[float, float]: ...
@property
def p1(self) -> tuple[float, float]: ...
@property
def xmin(self) -> float: ...
@property
def ymin(self) -> float: ...
@property
def xmax(self) -> float: ...
@property
def ymax(self) -> float: ...
@property
def min(self) -> tuple[float, float]: ...
@property
def max(self) -> tuple[float, float]: ...
@property
def intervalx(self) -> tuple[float, float]: ...
@property
def intervaly(self) -> tuple[float, float]: ...
@property
def width(self) -> float: ...
@property
def height(self) -> float: ...
@property
def size(self) -> tuple[float, float]: ...
@property
def bounds(self) -> tuple[float, float, float, float]: ...
@property
def extents(self) -> tuple[float, float, float, float]: ...
def get_points(self) -> np.ndarray: ...
def containsx(self, x: float) -> bool: ...
def containsy(self, y: float) -> bool: ...
def contains(self, x: float, y: float) -> bool: ...
def overlaps(self, other: BboxBase) -> bool: ...
def fully_containsx(self, x: float) -> bool: ...
def fully_containsy(self, y: float) -> bool: ...
def fully_contains(self, x: float, y: float) -> bool: ...
def fully_overlaps(self, other: BboxBase) -> bool: ...
def transformed(self, transform: Transform) -> Bbox: ...
coefs: dict[str, tuple[float, float]]
# anchored type can be s/str/Literal["C", "SW", "S", "SE", "E", "NE", "N", "NW", "W"]
def anchored(
self, c: tuple[float, float] | str, container: BboxBase | None = ...
) -> Bbox: ...
def shrunk(self, mx: float, my: float) -> Bbox: ...
def shrunk_to_aspect(
self,
box_aspect: float,
container: BboxBase | None = ...,
fig_aspect: float = ...,
) -> Bbox: ...
def splitx(self, *args: float) -> list[Bbox]: ...
def splity(self, *args: float) -> list[Bbox]: ...
def count_contains(self, vertices: ArrayLike) -> int: ...
def count_overlaps(self, bboxes: Iterable[BboxBase]) -> int: ...
def expanded(self, sw: float, sh: float) -> Bbox: ...
def padded(self, w_pad: float, h_pad: float | None = ...) -> Bbox: ...
def translated(self, tx: float, ty: float) -> Bbox: ...
def corners(self) -> np.ndarray: ...
def rotated(self, radians: float) -> Bbox: ...
@staticmethod
def union(bboxes: Sequence[BboxBase]) -> Bbox: ...
@staticmethod
def intersection(bbox1: BboxBase, bbox2: BboxBase) -> Bbox | None: ...
class Bbox(BboxBase):
def __init__(self, points: ArrayLike, **kwargs) -> None: ...
@staticmethod
def unit() -> Bbox: ...
@staticmethod
def null() -> Bbox: ...
@staticmethod
def from_bounds(x0: float, y0: float, width: float, height: float) -> Bbox: ...
@staticmethod
def from_extents(*args: float, minpos: float | None = ...) -> Bbox: ...
def __format__(self, fmt: str) -> str: ...
def ignore(self, value: bool) -> None: ...
def update_from_path(
self,
path: Path,
ignore: bool | None = ...,
updatex: bool = ...,
updatey: bool = ...,
) -> None: ...
def update_from_data_x(self, x: ArrayLike, ignore: bool | None = ...) -> None: ...
def update_from_data_y(self, y: ArrayLike, ignore: bool | None = ...) -> None: ...
def update_from_data_xy(
self,
xy: ArrayLike,
ignore: bool | None = ...,
updatex: bool = ...,
updatey: bool = ...,
) -> None: ...
@property
def minpos(self) -> float: ...
@property
def minposx(self) -> float: ...
@property
def minposy(self) -> float: ...
def get_points(self) -> np.ndarray: ...
def set_points(self, points: ArrayLike) -> None: ...
def set(self, other: Bbox) -> None: ...
def mutated(self) -> bool: ...
def mutatedx(self) -> bool: ...
def mutatedy(self) -> bool: ...
class TransformedBbox(BboxBase):
def __init__(self, bbox: Bbox, transform: Transform, **kwargs) -> None: ...
def get_points(self) -> np.ndarray: ...
class LockableBbox(BboxBase):
def __init__(
self,
bbox: BboxBase,
x0: float | None = ...,
y0: float | None = ...,
x1: float | None = ...,
y1: float | None = ...,
**kwargs
) -> None: ...
@property
def locked_x0(self) -> float | None: ...
@locked_x0.setter
def locked_x0(self, x0: float | None) -> None: ...
@property
def locked_y0(self) -> float | None: ...
@locked_y0.setter
def locked_y0(self, y0: float | None) -> None: ...
@property
def locked_x1(self) -> float | None: ...
@locked_x1.setter
def locked_x1(self, x1: float | None) -> None: ...
@property
def locked_y1(self) -> float | None: ...
@locked_y1.setter
def locked_y1(self, y1: float | None) -> None: ...
class Transform(TransformNode):
# Implemented as a standard attrs in base class, but functionally readonly and some subclasses implement as such
@property
def input_dims(self) -> int | None: ...
@property
def output_dims(self) -> int | None: ...
@property
def is_separable(self) -> bool: ...
@property
def has_inverse(self) -> bool: ...
def __add__(self, other: Transform) -> Transform: ...
@property
def depth(self) -> int: ...
def contains_branch(self, other: Transform) -> bool: ...
def contains_branch_seperately(
self, other_transform: Transform
) -> Sequence[bool]: ...
def __sub__(self, other: Transform) -> Transform: ...
def __array__(self, *args, **kwargs) -> np.ndarray: ...
def transform(self, values: ArrayLike) -> np.ndarray: ...
def transform_affine(self, values: ArrayLike) -> np.ndarray: ...
def transform_non_affine(self, values: ArrayLike) -> ArrayLike: ...
def transform_bbox(self, bbox: BboxBase) -> Bbox: ...
def get_affine(self) -> Transform: ...
def get_matrix(self) -> np.ndarray: ...
def transform_point(self, point: ArrayLike) -> np.ndarray: ...
def transform_path(self, path: Path) -> Path: ...
def transform_path_affine(self, path: Path) -> Path: ...
def transform_path_non_affine(self, path: Path) -> Path: ...
def transform_angles(
self,
angles: ArrayLike,
pts: ArrayLike,
radians: bool = ...,
pushoff: float = ...,
) -> np.ndarray: ...
def inverted(self) -> Transform: ...
class TransformWrapper(Transform):
pass_through: bool
def __init__(self, child: Transform) -> None: ...
def __eq__(self, other: object) -> bool: ...
def frozen(self) -> Transform: ...
def set(self, child: Transform) -> None: ...
class AffineBase(Transform):
is_affine: Literal[True]
def __init__(self, *args, **kwargs) -> None: ...
def __eq__(self, other: object) -> bool: ...
class Affine2DBase(AffineBase):
input_dims: Literal[2]
output_dims: Literal[2]
def frozen(self) -> Affine2D: ...
def to_values(self) -> tuple[float, float, float, float, float, float]: ...
class Affine2D(Affine2DBase):
def __init__(self, matrix: ArrayLike | None = ..., **kwargs) -> None: ...
@staticmethod
def from_values(
a: float, b: float, c: float, d: float, e: float, f: float
) -> Affine2D: ...
def set_matrix(self, mtx: ArrayLike) -> None: ...
def clear(self) -> Affine2D: ...
def rotate(self, theta: float) -> Affine2D: ...
def rotate_deg(self, degrees: float) -> Affine2D: ...
def rotate_around(self, x: float, y: float, theta: float) -> Affine2D: ...
def rotate_deg_around(self, x: float, y: float, degrees: float) -> Affine2D: ...
def translate(self, tx: float, ty: float) -> Affine2D: ...
def scale(self, sx: float, sy: float | None = ...) -> Affine2D: ...
def skew(self, xShear: float, yShear: float) -> Affine2D: ...
def skew_deg(self, xShear: float, yShear: float) -> Affine2D: ...
class IdentityTransform(Affine2DBase): ...
class _BlendedMixin:
def __eq__(self, other: object) -> bool: ...
def contains_branch_seperately(self, transform: Transform) -> Sequence[bool]: ...
class BlendedGenericTransform(_BlendedMixin, Transform):
input_dims: Literal[2]
output_dims: Literal[2]
pass_through: bool
def __init__(
self, x_transform: Transform, y_transform: Transform, **kwargs
) -> None: ...
@property
def depth(self) -> int: ...
def contains_branch(self, other: Transform) -> Literal[False]: ...
@property
def is_affine(self) -> bool: ...
class BlendedAffine2D(_BlendedMixin, Affine2DBase):
def __init__(
self, x_transform: Transform, y_transform: Transform, **kwargs
) -> None: ...
def blended_transform_factory(
x_transform: Transform, y_transform: Transform
) -> BlendedGenericTransform | BlendedAffine2D: ...
class CompositeGenericTransform(Transform):
pass_through: bool
def __init__(self, a: Transform, b: Transform, **kwargs) -> None: ...
class CompositeAffine2D(Affine2DBase):
def __init__(self, a: Affine2DBase, b: Affine2DBase, **kwargs) -> None: ...
@property
def depth(self) -> int: ...
def composite_transform_factory(a: Transform, b: Transform) -> Transform: ...
class BboxTransform(Affine2DBase):
def __init__(self, boxin: BboxBase, boxout: BboxBase, **kwargs) -> None: ...
class BboxTransformTo(Affine2DBase):
def __init__(self, boxout: BboxBase, **kwargs) -> None: ...
class BboxTransformToMaxOnly(BboxTransformTo): ...
class BboxTransformFrom(Affine2DBase):
def __init__(self, boxin: BboxBase, **kwargs) -> None: ...
class ScaledTranslation(Affine2DBase):
def __init__(
self, xt: float, yt: float, scale_trans: Affine2DBase, **kwargs
) -> None: ...
class AffineDeltaTransform(Affine2DBase):
def __init__(self, transform: Affine2DBase, **kwargs) -> None: ...
class TransformedPath(TransformNode):
def __init__(self, path: Path, transform: Transform) -> None: ...
def get_transformed_points_and_affine(self) -> tuple[Path, Transform]: ...
def get_transformed_path_and_affine(self) -> tuple[Path, Transform]: ...
def get_fully_transformed_path(self) -> Path: ...
def get_affine(self) -> Transform: ...
class TransformedPatchPath(TransformedPath):
def __init__(self, patch: Patch) -> None: ...
def nonsingular(
vmin: float,
vmax: float,
expander: float = ...,
tiny: float = ...,
increasing: bool = ...,
) -> tuple[float, float]: ...
def interval_contains(interval: tuple[float, float], val: float) -> bool: ...
def interval_contains_open(interval: tuple[float, float], val: float) -> bool: ...
def offset_copy(
trans: Transform,
fig: Figure | None = ...,
x: float = ...,
y: float = ...,
units: Literal["inches", "points", "dots"] = ...,
) -> Transform: ...