ai-content-maker/.venv/Lib/site-packages/numba/np/npdatetime.py

837 lines
33 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
"""
Implementation of operations on numpy timedelta64.
"""
import numpy as np
import operator
import llvmlite.ir
from llvmlite.ir import Constant
from numba.core import types, cgutils
from numba.core.cgutils import create_constant_array
from numba.core.imputils import (lower_builtin, lower_constant,
impl_ret_untracked, lower_cast)
from numba.np import npdatetime_helpers, numpy_support, npyfuncs
from numba.extending import overload_method
from numba.core.config import IS_32BITS
from numba.core.errors import LoweringError
# datetime64 and timedelta64 use the same internal representation
DATETIME64 = TIMEDELTA64 = llvmlite.ir.IntType(64)
NAT = Constant(TIMEDELTA64, npdatetime_helpers.NAT)
TIMEDELTA_BINOP_SIG = (types.NPTimedelta,) * 2
def scale_by_constant(builder, val, factor):
"""
Multiply *val* by the constant *factor*.
"""
return builder.mul(val, Constant(TIMEDELTA64, factor))
def unscale_by_constant(builder, val, factor):
"""
Divide *val* by the constant *factor*.
"""
return builder.sdiv(val, Constant(TIMEDELTA64, factor))
def add_constant(builder, val, const):
"""
Add constant *const* to *val*.
"""
return builder.add(val, Constant(TIMEDELTA64, const))
def scale_timedelta(context, builder, val, srcty, destty):
"""
Scale the timedelta64 *val* from *srcty* to *destty*
(both numba.types.NPTimedelta instances)
"""
factor = npdatetime_helpers.get_timedelta_conversion_factor(
srcty.unit, destty.unit)
if factor is None:
# This can happen when using explicit output in a ufunc.
msg = f"cannot convert timedelta64 from {srcty.unit} to {destty.unit}"
raise LoweringError(msg)
return scale_by_constant(builder, val, factor)
def normalize_timedeltas(context, builder, left, right, leftty, rightty):
"""
Scale either *left* or *right* to the other's unit, in order to have
homogeneous units.
"""
factor = npdatetime_helpers.get_timedelta_conversion_factor(
leftty.unit, rightty.unit)
if factor is not None:
return scale_by_constant(builder, left, factor), right
factor = npdatetime_helpers.get_timedelta_conversion_factor(
rightty.unit, leftty.unit)
if factor is not None:
return left, scale_by_constant(builder, right, factor)
# Typing should not let this happen, except on == and != operators
raise RuntimeError("cannot normalize %r and %r" % (leftty, rightty))
def alloc_timedelta_result(builder, name='ret'):
"""
Allocate a NaT-initialized datetime64 (or timedelta64) result slot.
"""
ret = cgutils.alloca_once(builder, TIMEDELTA64, name=name)
builder.store(NAT, ret)
return ret
def alloc_boolean_result(builder, name='ret'):
"""
Allocate an uninitialized boolean result slot.
"""
ret = cgutils.alloca_once(builder, llvmlite.ir.IntType(1), name=name)
return ret
def is_not_nat(builder, val):
"""
Return a predicate which is true if *val* is not NaT.
"""
return builder.icmp_unsigned('!=', val, NAT)
def are_not_nat(builder, vals):
"""
Return a predicate which is true if all of *vals* are not NaT.
"""
assert len(vals) >= 1
pred = is_not_nat(builder, vals[0])
for val in vals[1:]:
pred = builder.and_(pred, is_not_nat(builder, val))
return pred
normal_year_months = create_constant_array(
TIMEDELTA64,
[31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31])
leap_year_months = create_constant_array(
TIMEDELTA64,
[31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31])
normal_year_months_acc = create_constant_array(
TIMEDELTA64,
[0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334])
leap_year_months_acc = create_constant_array(
TIMEDELTA64,
[0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335])
@lower_constant(types.NPDatetime)
@lower_constant(types.NPTimedelta)
def datetime_constant(context, builder, ty, pyval):
return DATETIME64(pyval.astype(np.int64))
# Arithmetic operators on timedelta64
@lower_builtin(operator.pos, types.NPTimedelta)
def timedelta_pos_impl(context, builder, sig, args):
res = args[0]
return impl_ret_untracked(context, builder, sig.return_type, res)
@lower_builtin(operator.neg, types.NPTimedelta)
def timedelta_neg_impl(context, builder, sig, args):
res = builder.neg(args[0])
return impl_ret_untracked(context, builder, sig.return_type, res)
@lower_builtin(abs, types.NPTimedelta)
def timedelta_abs_impl(context, builder, sig, args):
val, = args
ret = alloc_timedelta_result(builder)
with builder.if_else(cgutils.is_scalar_neg(builder, val)) as (then, otherwise):
with then:
builder.store(builder.neg(val), ret)
with otherwise:
builder.store(val, ret)
res = builder.load(ret)
return impl_ret_untracked(context, builder, sig.return_type, res)
def timedelta_sign_impl(context, builder, sig, args):
"""
np.sign(timedelta64)
"""
val, = args
ret = alloc_timedelta_result(builder)
zero = Constant(TIMEDELTA64, 0)
with builder.if_else(builder.icmp_signed('>', val, zero)
) as (gt_zero, le_zero):
with gt_zero:
builder.store(Constant(TIMEDELTA64, 1), ret)
with le_zero:
with builder.if_else(builder.icmp_unsigned('==', val, zero)
) as (eq_zero, lt_zero):
with eq_zero:
builder.store(Constant(TIMEDELTA64, 0), ret)
with lt_zero:
builder.store(Constant(TIMEDELTA64, -1), ret)
res = builder.load(ret)
return impl_ret_untracked(context, builder, sig.return_type, res)
@lower_builtin(operator.add, *TIMEDELTA_BINOP_SIG)
@lower_builtin(operator.iadd, *TIMEDELTA_BINOP_SIG)
def timedelta_add_impl(context, builder, sig, args):
[va, vb] = args
[ta, tb] = sig.args
ret = alloc_timedelta_result(builder)
with cgutils.if_likely(builder, are_not_nat(builder, [va, vb])):
va = scale_timedelta(context, builder, va, ta, sig.return_type)
vb = scale_timedelta(context, builder, vb, tb, sig.return_type)
builder.store(builder.add(va, vb), ret)
res = builder.load(ret)
return impl_ret_untracked(context, builder, sig.return_type, res)
@lower_builtin(operator.sub, *TIMEDELTA_BINOP_SIG)
@lower_builtin(operator.isub, *TIMEDELTA_BINOP_SIG)
def timedelta_sub_impl(context, builder, sig, args):
[va, vb] = args
[ta, tb] = sig.args
ret = alloc_timedelta_result(builder)
with cgutils.if_likely(builder, are_not_nat(builder, [va, vb])):
va = scale_timedelta(context, builder, va, ta, sig.return_type)
vb = scale_timedelta(context, builder, vb, tb, sig.return_type)
builder.store(builder.sub(va, vb), ret)
res = builder.load(ret)
return impl_ret_untracked(context, builder, sig.return_type, res)
def _timedelta_times_number(context, builder, td_arg, td_type,
number_arg, number_type, return_type):
ret = alloc_timedelta_result(builder)
with cgutils.if_likely(builder, is_not_nat(builder, td_arg)):
if isinstance(number_type, types.Float):
val = builder.sitofp(td_arg, number_arg.type)
val = builder.fmul(val, number_arg)
val = _cast_to_timedelta(context, builder, val)
else:
val = builder.mul(td_arg, number_arg)
# The scaling is required for ufunc np.multiply() with an explicit
# output in a different unit.
val = scale_timedelta(context, builder, val, td_type, return_type)
builder.store(val, ret)
return builder.load(ret)
@lower_builtin(operator.mul, types.NPTimedelta, types.Integer)
@lower_builtin(operator.imul, types.NPTimedelta, types.Integer)
@lower_builtin(operator.mul, types.NPTimedelta, types.Float)
@lower_builtin(operator.imul, types.NPTimedelta, types.Float)
def timedelta_times_number(context, builder, sig, args):
res = _timedelta_times_number(context, builder,
args[0], sig.args[0], args[1], sig.args[1],
sig.return_type)
return impl_ret_untracked(context, builder, sig.return_type, res)
@lower_builtin(operator.mul, types.Integer, types.NPTimedelta)
@lower_builtin(operator.imul, types.Integer, types.NPTimedelta)
@lower_builtin(operator.mul, types.Float, types.NPTimedelta)
@lower_builtin(operator.imul, types.Float, types.NPTimedelta)
def number_times_timedelta(context, builder, sig, args):
res = _timedelta_times_number(context, builder,
args[1], sig.args[1], args[0], sig.args[0],
sig.return_type)
return impl_ret_untracked(context, builder, sig.return_type, res)
@lower_builtin(operator.truediv, types.NPTimedelta, types.Integer)
@lower_builtin(operator.itruediv, types.NPTimedelta, types.Integer)
@lower_builtin(operator.floordiv, types.NPTimedelta, types.Integer)
@lower_builtin(operator.ifloordiv, types.NPTimedelta, types.Integer)
@lower_builtin(operator.truediv, types.NPTimedelta, types.Float)
@lower_builtin(operator.itruediv, types.NPTimedelta, types.Float)
@lower_builtin(operator.floordiv, types.NPTimedelta, types.Float)
@lower_builtin(operator.ifloordiv, types.NPTimedelta, types.Float)
def timedelta_over_number(context, builder, sig, args):
td_arg, number_arg = args
number_type = sig.args[1]
ret = alloc_timedelta_result(builder)
ok = builder.and_(is_not_nat(builder, td_arg),
builder.not_(cgutils.is_scalar_zero_or_nan(builder, number_arg)))
with cgutils.if_likely(builder, ok):
# Denominator is non-zero, non-NaN
if isinstance(number_type, types.Float):
val = builder.sitofp(td_arg, number_arg.type)
val = builder.fdiv(val, number_arg)
val = _cast_to_timedelta(context, builder, val)
else:
val = builder.sdiv(td_arg, number_arg)
# The scaling is required for ufuncs np.*divide() with an explicit
# output in a different unit.
val = scale_timedelta(context, builder, val,
sig.args[0], sig.return_type)
builder.store(val, ret)
res = builder.load(ret)
return impl_ret_untracked(context, builder, sig.return_type, res)
@lower_builtin(operator.truediv, *TIMEDELTA_BINOP_SIG)
@lower_builtin(operator.itruediv, *TIMEDELTA_BINOP_SIG)
def timedelta_over_timedelta(context, builder, sig, args):
[va, vb] = args
[ta, tb] = sig.args
not_nan = are_not_nat(builder, [va, vb])
ll_ret_type = context.get_value_type(sig.return_type)
ret = cgutils.alloca_once(builder, ll_ret_type, name='ret')
builder.store(Constant(ll_ret_type, float('nan')), ret)
with cgutils.if_likely(builder, not_nan):
va, vb = normalize_timedeltas(context, builder, va, vb, ta, tb)
va = builder.sitofp(va, ll_ret_type)
vb = builder.sitofp(vb, ll_ret_type)
builder.store(builder.fdiv(va, vb), ret)
res = builder.load(ret)
return impl_ret_untracked(context, builder, sig.return_type, res)
@lower_builtin(operator.floordiv, *TIMEDELTA_BINOP_SIG)
def timedelta_floor_div_timedelta(context, builder, sig, args):
[va, vb] = args
[ta, tb] = sig.args
ll_ret_type = context.get_value_type(sig.return_type)
not_nan = are_not_nat(builder, [va, vb])
ret = cgutils.alloca_once(builder, ll_ret_type, name='ret')
zero = Constant(ll_ret_type, 0)
one = Constant(ll_ret_type, 1)
builder.store(zero, ret)
with cgutils.if_likely(builder, not_nan):
va, vb = normalize_timedeltas(context, builder, va, vb, ta, tb)
# is the denominator zero or NaT?
denom_ok = builder.not_(builder.icmp_signed('==', vb, zero))
with cgutils.if_likely(builder, denom_ok):
# is either arg negative?
vaneg = builder.icmp_signed('<', va, zero)
neg = builder.or_(vaneg, builder.icmp_signed('<', vb, zero))
with builder.if_else(neg) as (then, otherwise):
with then: # one or more value negative
with builder.if_else(vaneg) as (negthen, negotherwise):
with negthen:
top = builder.sub(va, one)
div = builder.sdiv(top, vb)
builder.store(div, ret)
with negotherwise:
top = builder.add(va, one)
div = builder.sdiv(top, vb)
builder.store(div, ret)
with otherwise:
div = builder.sdiv(va, vb)
builder.store(div, ret)
res = builder.load(ret)
return impl_ret_untracked(context, builder, sig.return_type, res)
def timedelta_mod_timedelta(context, builder, sig, args):
# inspired by https://github.com/numpy/numpy/blob/fe8072a12d65e43bd2e0b0f9ad67ab0108cc54b3/numpy/core/src/umath/loops.c.src#L1424
# alg is basically as `a % b`:
# if a or b is NaT return NaT
# elseif b is 0 return NaT
# else pretend a and b are int and do pythonic int modulus
[va, vb] = args
[ta, tb] = sig.args
not_nan = are_not_nat(builder, [va, vb])
ll_ret_type = context.get_value_type(sig.return_type)
ret = alloc_timedelta_result(builder)
builder.store(NAT, ret)
zero = Constant(ll_ret_type, 0)
with cgutils.if_likely(builder, not_nan):
va, vb = normalize_timedeltas(context, builder, va, vb, ta, tb)
# is the denominator zero or NaT?
denom_ok = builder.not_(builder.icmp_signed('==', vb, zero))
with cgutils.if_likely(builder, denom_ok):
# is either arg negative?
vapos = builder.icmp_signed('>', va, zero)
vbpos = builder.icmp_signed('>', vb, zero)
rem = builder.srem(va, vb)
cond = builder.or_(builder.and_(vapos, vbpos),
builder.icmp_signed('==', rem, zero))
with builder.if_else(cond) as (then, otherwise):
with then:
builder.store(rem, ret)
with otherwise:
builder.store(builder.add(rem, vb), ret)
res = builder.load(ret)
return impl_ret_untracked(context, builder, sig.return_type, res)
# Comparison operators on timedelta64
def _create_timedelta_comparison_impl(ll_op, default_value):
def impl(context, builder, sig, args):
[va, vb] = args
[ta, tb] = sig.args
ret = alloc_boolean_result(builder)
with builder.if_else(are_not_nat(builder, [va, vb])) as (then, otherwise):
with then:
try:
norm_a, norm_b = normalize_timedeltas(
context, builder, va, vb, ta, tb)
except RuntimeError:
# Cannot normalize units => the values are unequal (except if NaT)
builder.store(default_value, ret)
else:
builder.store(builder.icmp_unsigned(ll_op, norm_a, norm_b), ret)
with otherwise:
# NaT ==/>=/>/</<= NaT is False
# NaT != <anything, including NaT> is True
if ll_op == '!=':
builder.store(cgutils.true_bit, ret)
else:
builder.store(cgutils.false_bit, ret)
res = builder.load(ret)
return impl_ret_untracked(context, builder, sig.return_type, res)
return impl
def _create_timedelta_ordering_impl(ll_op):
def impl(context, builder, sig, args):
[va, vb] = args
[ta, tb] = sig.args
ret = alloc_boolean_result(builder)
with builder.if_else(are_not_nat(builder, [va, vb])) as (then, otherwise):
with then:
norm_a, norm_b = normalize_timedeltas(
context, builder, va, vb, ta, tb)
builder.store(builder.icmp_signed(ll_op, norm_a, norm_b), ret)
with otherwise:
# NaT >=/>/</<= NaT is False
builder.store(cgutils.false_bit, ret)
res = builder.load(ret)
return impl_ret_untracked(context, builder, sig.return_type, res)
return impl
timedelta_eq_timedelta_impl = _create_timedelta_comparison_impl(
'==', cgutils.false_bit)
timedelta_ne_timedelta_impl = _create_timedelta_comparison_impl(
'!=', cgutils.true_bit)
timedelta_lt_timedelta_impl = _create_timedelta_ordering_impl('<')
timedelta_le_timedelta_impl = _create_timedelta_ordering_impl('<=')
timedelta_gt_timedelta_impl = _create_timedelta_ordering_impl('>')
timedelta_ge_timedelta_impl = _create_timedelta_ordering_impl('>=')
for op_, func in [(operator.eq, timedelta_eq_timedelta_impl),
(operator.ne, timedelta_ne_timedelta_impl),
(operator.lt, timedelta_lt_timedelta_impl),
(operator.le, timedelta_le_timedelta_impl),
(operator.gt, timedelta_gt_timedelta_impl),
(operator.ge, timedelta_ge_timedelta_impl)]:
lower_builtin(op_, *TIMEDELTA_BINOP_SIG)(func)
# Arithmetic on datetime64
def is_leap_year(builder, year_val):
"""
Return a predicate indicating whether *year_val* (offset by 1970) is a
leap year.
"""
actual_year = builder.add(year_val, Constant(DATETIME64, 1970))
multiple_of_4 = cgutils.is_null(
builder, builder.and_(actual_year, Constant(DATETIME64, 3)))
not_multiple_of_100 = cgutils.is_not_null(
builder, builder.srem(actual_year, Constant(DATETIME64, 100)))
multiple_of_400 = cgutils.is_null(
builder, builder.srem(actual_year, Constant(DATETIME64, 400)))
return builder.and_(multiple_of_4,
builder.or_(not_multiple_of_100, multiple_of_400))
def year_to_days(builder, year_val):
"""
Given a year *year_val* (offset to 1970), return the number of days
since the 1970 epoch.
"""
# The algorithm below is copied from Numpy's get_datetimestruct_days()
# (src/multiarray/datetime.c)
ret = cgutils.alloca_once(builder, TIMEDELTA64)
# First approximation
days = scale_by_constant(builder, year_val, 365)
# Adjust for leap years
with builder.if_else(cgutils.is_neg_int(builder, year_val)) \
as (if_neg, if_pos):
with if_pos:
# At or after 1970:
# 1968 is the closest leap year before 1970.
# Exclude the current year, so add 1.
from_1968 = add_constant(builder, year_val, 1)
# Add one day for each 4 years
p_days = builder.add(days,
unscale_by_constant(builder, from_1968, 4))
# 1900 is the closest previous year divisible by 100
from_1900 = add_constant(builder, from_1968, 68)
# Subtract one day for each 100 years
p_days = builder.sub(p_days,
unscale_by_constant(builder, from_1900, 100))
# 1600 is the closest previous year divisible by 400
from_1600 = add_constant(builder, from_1900, 300)
# Add one day for each 400 years
p_days = builder.add(p_days,
unscale_by_constant(builder, from_1600, 400))
builder.store(p_days, ret)
with if_neg:
# Before 1970:
# NOTE `year_val` is negative, and so will be `from_1972` and `from_2000`.
# 1972 is the closest later year after 1970.
# Include the current year, so subtract 2.
from_1972 = add_constant(builder, year_val, -2)
# Subtract one day for each 4 years (`from_1972` is negative)
n_days = builder.add(days,
unscale_by_constant(builder, from_1972, 4))
# 2000 is the closest later year divisible by 100
from_2000 = add_constant(builder, from_1972, -28)
# Add one day for each 100 years
n_days = builder.sub(n_days,
unscale_by_constant(builder, from_2000, 100))
# 2000 is also the closest later year divisible by 400
# Subtract one day for each 400 years
n_days = builder.add(n_days,
unscale_by_constant(builder, from_2000, 400))
builder.store(n_days, ret)
return builder.load(ret)
def reduce_datetime_for_unit(builder, dt_val, src_unit, dest_unit):
dest_unit_code = npdatetime_helpers.DATETIME_UNITS[dest_unit]
src_unit_code = npdatetime_helpers.DATETIME_UNITS[src_unit]
if dest_unit_code < 2 or src_unit_code >= 2:
return dt_val, src_unit
# Need to compute the day ordinal for *dt_val*
if src_unit_code == 0:
# Years to days
year_val = dt_val
days_val = year_to_days(builder, year_val)
else:
# Months to days
leap_array = cgutils.global_constant(builder, "leap_year_months_acc",
leap_year_months_acc)
normal_array = cgutils.global_constant(builder, "normal_year_months_acc",
normal_year_months_acc)
days = cgutils.alloca_once(builder, TIMEDELTA64)
# First compute year number and month number
year, month = cgutils.divmod_by_constant(builder, dt_val, 12)
# Then deduce the number of days
with builder.if_else(is_leap_year(builder, year)) as (then, otherwise):
with then:
addend = builder.load(cgutils.gep(builder, leap_array,
0, month, inbounds=True))
builder.store(addend, days)
with otherwise:
addend = builder.load(cgutils.gep(builder, normal_array,
0, month, inbounds=True))
builder.store(addend, days)
days_val = year_to_days(builder, year)
days_val = builder.add(days_val, builder.load(days))
if dest_unit_code == 2:
# Need to scale back to weeks
weeks, _ = cgutils.divmod_by_constant(builder, days_val, 7)
return weeks, 'W'
else:
return days_val, 'D'
def convert_datetime_for_arith(builder, dt_val, src_unit, dest_unit):
"""
Convert datetime *dt_val* from *src_unit* to *dest_unit*.
"""
# First partial conversion to days or weeks, if necessary.
dt_val, dt_unit = reduce_datetime_for_unit(
builder, dt_val, src_unit, dest_unit)
# Then multiply by the remaining constant factor.
dt_factor = npdatetime_helpers.get_timedelta_conversion_factor(dt_unit, dest_unit)
if dt_factor is None:
# This can happen when using explicit output in a ufunc.
raise LoweringError("cannot convert datetime64 from %r to %r"
% (src_unit, dest_unit))
return scale_by_constant(builder, dt_val, dt_factor)
def _datetime_timedelta_arith(ll_op_name):
def impl(context, builder, dt_arg, dt_unit,
td_arg, td_unit, ret_unit):
ret = alloc_timedelta_result(builder)
with cgutils.if_likely(builder, are_not_nat(builder, [dt_arg, td_arg])):
dt_arg = convert_datetime_for_arith(builder, dt_arg,
dt_unit, ret_unit)
td_factor = npdatetime_helpers.get_timedelta_conversion_factor(
td_unit, ret_unit)
td_arg = scale_by_constant(builder, td_arg, td_factor)
ret_val = getattr(builder, ll_op_name)(dt_arg, td_arg)
builder.store(ret_val, ret)
return builder.load(ret)
return impl
_datetime_plus_timedelta = _datetime_timedelta_arith('add')
_datetime_minus_timedelta = _datetime_timedelta_arith('sub')
# datetime64 + timedelta64
@lower_builtin(operator.add, types.NPDatetime, types.NPTimedelta)
@lower_builtin(operator.iadd, types.NPDatetime, types.NPTimedelta)
def datetime_plus_timedelta(context, builder, sig, args):
dt_arg, td_arg = args
dt_type, td_type = sig.args
res = _datetime_plus_timedelta(context, builder,
dt_arg, dt_type.unit,
td_arg, td_type.unit,
sig.return_type.unit)
return impl_ret_untracked(context, builder, sig.return_type, res)
@lower_builtin(operator.add, types.NPTimedelta, types.NPDatetime)
@lower_builtin(operator.iadd, types.NPTimedelta, types.NPDatetime)
def timedelta_plus_datetime(context, builder, sig, args):
td_arg, dt_arg = args
td_type, dt_type = sig.args
res = _datetime_plus_timedelta(context, builder,
dt_arg, dt_type.unit,
td_arg, td_type.unit,
sig.return_type.unit)
return impl_ret_untracked(context, builder, sig.return_type, res)
# datetime64 - timedelta64
@lower_builtin(operator.sub, types.NPDatetime, types.NPTimedelta)
@lower_builtin(operator.isub, types.NPDatetime, types.NPTimedelta)
def datetime_minus_timedelta(context, builder, sig, args):
dt_arg, td_arg = args
dt_type, td_type = sig.args
res = _datetime_minus_timedelta(context, builder,
dt_arg, dt_type.unit,
td_arg, td_type.unit,
sig.return_type.unit)
return impl_ret_untracked(context, builder, sig.return_type, res)
# datetime64 - datetime64
@lower_builtin(operator.sub, types.NPDatetime, types.NPDatetime)
def datetime_minus_datetime(context, builder, sig, args):
va, vb = args
ta, tb = sig.args
unit_a = ta.unit
unit_b = tb.unit
ret_unit = sig.return_type.unit
ret = alloc_timedelta_result(builder)
with cgutils.if_likely(builder, are_not_nat(builder, [va, vb])):
va = convert_datetime_for_arith(builder, va, unit_a, ret_unit)
vb = convert_datetime_for_arith(builder, vb, unit_b, ret_unit)
ret_val = builder.sub(va, vb)
builder.store(ret_val, ret)
res = builder.load(ret)
return impl_ret_untracked(context, builder, sig.return_type, res)
# datetime64 comparisons
def _create_datetime_comparison_impl(ll_op):
def impl(context, builder, sig, args):
va, vb = args
ta, tb = sig.args
unit_a = ta.unit
unit_b = tb.unit
ret_unit = npdatetime_helpers.get_best_unit(unit_a, unit_b)
ret = alloc_boolean_result(builder)
with builder.if_else(are_not_nat(builder, [va, vb])) as (then, otherwise):
with then:
norm_a = convert_datetime_for_arith(
builder, va, unit_a, ret_unit)
norm_b = convert_datetime_for_arith(
builder, vb, unit_b, ret_unit)
ret_val = builder.icmp_signed(ll_op, norm_a, norm_b)
builder.store(ret_val, ret)
with otherwise:
if ll_op == '!=':
ret_val = cgutils.true_bit
else:
ret_val = cgutils.false_bit
builder.store(ret_val, ret)
res = builder.load(ret)
return impl_ret_untracked(context, builder, sig.return_type, res)
return impl
datetime_eq_datetime_impl = _create_datetime_comparison_impl('==')
datetime_ne_datetime_impl = _create_datetime_comparison_impl('!=')
datetime_lt_datetime_impl = _create_datetime_comparison_impl('<')
datetime_le_datetime_impl = _create_datetime_comparison_impl('<=')
datetime_gt_datetime_impl = _create_datetime_comparison_impl('>')
datetime_ge_datetime_impl = _create_datetime_comparison_impl('>=')
for op, func in [(operator.eq, datetime_eq_datetime_impl),
(operator.ne, datetime_ne_datetime_impl),
(operator.lt, datetime_lt_datetime_impl),
(operator.le, datetime_le_datetime_impl),
(operator.gt, datetime_gt_datetime_impl),
(operator.ge, datetime_ge_datetime_impl)]:
lower_builtin(op, *[types.NPDatetime]*2)(func)
########################################################################
# datetime/timedelta fmax/fmin maximum/minimum support
def _gen_datetime_max_impl(NAT_DOMINATES):
def datetime_max_impl(context, builder, sig, args):
# note this could be optimizing relying on the actual value of NAT
# but as NumPy doesn't rely on this, this seems more resilient
in1, in2 = args
in1_not_nat = is_not_nat(builder, in1)
in2_not_nat = is_not_nat(builder, in2)
in1_ge_in2 = builder.icmp_signed('>=', in1, in2)
res = builder.select(in1_ge_in2, in1, in2)
if NAT_DOMINATES:
# NaT now dominates, like NaN
in1, in2 = in2, in1
res = builder.select(in1_not_nat, res, in2)
res = builder.select(in2_not_nat, res, in1)
return impl_ret_untracked(context, builder, sig.return_type, res)
return datetime_max_impl
datetime_maximum_impl = _gen_datetime_max_impl(True)
datetime_fmax_impl = _gen_datetime_max_impl(False)
def _gen_datetime_min_impl(NAT_DOMINATES):
def datetime_min_impl(context, builder, sig, args):
# note this could be optimizing relying on the actual value of NAT
# but as NumPy doesn't rely on this, this seems more resilient
in1, in2 = args
in1_not_nat = is_not_nat(builder, in1)
in2_not_nat = is_not_nat(builder, in2)
in1_le_in2 = builder.icmp_signed('<=', in1, in2)
res = builder.select(in1_le_in2, in1, in2)
if NAT_DOMINATES:
# NaT now dominates, like NaN
in1, in2 = in2, in1
res = builder.select(in1_not_nat, res, in2)
res = builder.select(in2_not_nat, res, in1)
return impl_ret_untracked(context, builder, sig.return_type, res)
return datetime_min_impl
datetime_minimum_impl = _gen_datetime_min_impl(True)
datetime_fmin_impl = _gen_datetime_min_impl(False)
def _gen_timedelta_max_impl(NAT_DOMINATES):
def timedelta_max_impl(context, builder, sig, args):
# note this could be optimizing relying on the actual value of NAT
# but as NumPy doesn't rely on this, this seems more resilient
in1, in2 = args
in1_not_nat = is_not_nat(builder, in1)
in2_not_nat = is_not_nat(builder, in2)
in1_ge_in2 = builder.icmp_signed('>=', in1, in2)
res = builder.select(in1_ge_in2, in1, in2)
if NAT_DOMINATES:
# NaT now dominates, like NaN
in1, in2 = in2, in1
res = builder.select(in1_not_nat, res, in2)
res = builder.select(in2_not_nat, res, in1)
return impl_ret_untracked(context, builder, sig.return_type, res)
return timedelta_max_impl
timedelta_maximum_impl = _gen_timedelta_max_impl(True)
timedelta_fmax_impl = _gen_timedelta_max_impl(False)
def _gen_timedelta_min_impl(NAT_DOMINATES):
def timedelta_min_impl(context, builder, sig, args):
# note this could be optimizing relying on the actual value of NAT
# but as NumPy doesn't rely on this, this seems more resilient
in1, in2 = args
in1_not_nat = is_not_nat(builder, in1)
in2_not_nat = is_not_nat(builder, in2)
in1_le_in2 = builder.icmp_signed('<=', in1, in2)
res = builder.select(in1_le_in2, in1, in2)
if NAT_DOMINATES:
# NaT now dominates, like NaN
in1, in2 = in2, in1
res = builder.select(in1_not_nat, res, in2)
res = builder.select(in2_not_nat, res, in1)
return impl_ret_untracked(context, builder, sig.return_type, res)
return timedelta_min_impl
timedelta_minimum_impl = _gen_timedelta_min_impl(True)
timedelta_fmin_impl = _gen_timedelta_min_impl(False)
def _cast_to_timedelta(context, builder, val):
temp = builder.alloca(TIMEDELTA64)
val_is_nan = builder.fcmp_unordered('uno', val, val)
with builder.if_else(val_is_nan) as (
then, els):
with then:
# NaN does not guarantee to cast to NAT.
# We should store NAT explicitly.
builder.store(NAT, temp)
with els:
builder.store(builder.fptosi(val, TIMEDELTA64), temp)
return builder.load(temp)
@lower_builtin(np.isnat, types.NPDatetime)
@lower_builtin(np.isnat, types.NPTimedelta)
def _np_isnat_impl(context, builder, sig, args):
return npyfuncs.np_datetime_isnat_impl(context, builder, sig, args)
@lower_cast(types.NPDatetime, types.Integer)
@lower_cast(types.NPTimedelta, types.Integer)
def _cast_npdatetime_int64(context, builder, fromty, toty, val):
if toty.bitwidth != 64: # all date time types are 64 bit
msg = f"Cannot cast {fromty} to {toty} as {toty} is not 64 bits wide."
raise ValueError(msg)
return val
@overload_method(types.NPTimedelta, '__hash__')
@overload_method(types.NPDatetime, '__hash__')
def ol_hash_npdatetime(x):
if IS_32BITS:
def impl(x):
x = np.int64(x)
if x < 2**31 - 1: # x < LONG_MAX
y = np.int32(x)
else:
hi = (np.int64(x) & 0xffffffff00000000) >> 32
lo = (np.int64(x) & 0x00000000ffffffff)
y = np.int32(lo + (1000003) * hi)
if y == -1:
y = np.int32(-2)
return y
else:
def impl(x):
if np.int64(x) == -1:
return np.int64(-2)
return np.int64(x)
return impl
lower_builtin(npdatetime_helpers.datetime_minimum, types.NPDatetime, types.NPDatetime)(datetime_minimum_impl)
lower_builtin(npdatetime_helpers.datetime_minimum, types.NPTimedelta, types.NPTimedelta)(datetime_minimum_impl)
lower_builtin(npdatetime_helpers.datetime_maximum, types.NPDatetime, types.NPDatetime)(datetime_maximum_impl)
lower_builtin(npdatetime_helpers.datetime_maximum, types.NPTimedelta, types.NPTimedelta)(datetime_maximum_impl)