ai-content-maker/.venv/Lib/site-packages/pandas/tests/arrays/floating/test_comparison.py

66 lines
2.0 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
from pandas.core.arrays import FloatingArray
from pandas.tests.arrays.masked_shared import (
ComparisonOps,
NumericOps,
)
class TestComparisonOps(NumericOps, ComparisonOps):
@pytest.mark.parametrize("other", [True, False, pd.NA, -1.0, 0.0, 1])
def test_scalar(self, other, comparison_op, dtype):
ComparisonOps.test_scalar(self, other, comparison_op, dtype)
def test_compare_with_integerarray(self, comparison_op):
op = comparison_op
a = pd.array([0, 1, None] * 3, dtype="Int64")
b = pd.array([0] * 3 + [1] * 3 + [None] * 3, dtype="Float64")
other = b.astype("Int64")
expected = op(a, other)
result = op(a, b)
tm.assert_extension_array_equal(result, expected)
expected = op(other, a)
result = op(b, a)
tm.assert_extension_array_equal(result, expected)
def test_equals():
# GH-30652
# equals is generally tested in /tests/extension/base/methods, but this
# specifically tests that two arrays of the same class but different dtype
# do not evaluate equal
a1 = pd.array([1, 2, None], dtype="Float64")
a2 = pd.array([1, 2, None], dtype="Float32")
assert a1.equals(a2) is False
def test_equals_nan_vs_na():
# GH#44382
mask = np.zeros(3, dtype=bool)
data = np.array([1.0, np.nan, 3.0], dtype=np.float64)
left = FloatingArray(data, mask)
assert left.equals(left)
tm.assert_extension_array_equal(left, left)
assert left.equals(left.copy())
assert left.equals(FloatingArray(data.copy(), mask.copy()))
mask2 = np.array([False, True, False], dtype=bool)
data2 = np.array([1.0, 2.0, 3.0], dtype=np.float64)
right = FloatingArray(data2, mask2)
assert right.equals(right)
tm.assert_extension_array_equal(right, right)
assert not left.equals(right)
# with mask[1] = True, the only difference is data[1], which should
# not matter for equals
mask[1] = True
assert left.equals(right)