ai-content-maker/.venv/Lib/site-packages/pandas/tests/arrays/floating/test_construction.py

204 lines
6.2 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
from pandas.core.arrays import FloatingArray
from pandas.core.arrays.floating import (
Float32Dtype,
Float64Dtype,
)
def test_uses_pandas_na():
a = pd.array([1, None], dtype=Float64Dtype())
assert a[1] is pd.NA
def test_floating_array_constructor():
values = np.array([1, 2, 3, 4], dtype="float64")
mask = np.array([False, False, False, True], dtype="bool")
result = FloatingArray(values, mask)
expected = pd.array([1, 2, 3, np.nan], dtype="Float64")
tm.assert_extension_array_equal(result, expected)
tm.assert_numpy_array_equal(result._data, values)
tm.assert_numpy_array_equal(result._mask, mask)
msg = r".* should be .* numpy array. Use the 'pd.array' function instead"
with pytest.raises(TypeError, match=msg):
FloatingArray(values.tolist(), mask)
with pytest.raises(TypeError, match=msg):
FloatingArray(values, mask.tolist())
with pytest.raises(TypeError, match=msg):
FloatingArray(values.astype(int), mask)
msg = r"__init__\(\) missing 1 required positional argument: 'mask'"
with pytest.raises(TypeError, match=msg):
FloatingArray(values)
def test_floating_array_disallows_float16():
# GH#44715
arr = np.array([1, 2], dtype=np.float16)
mask = np.array([False, False])
msg = "FloatingArray does not support np.float16 dtype"
with pytest.raises(TypeError, match=msg):
FloatingArray(arr, mask)
def test_floating_array_disallows_Float16_dtype(request):
# GH#44715
with pytest.raises(TypeError, match="data type 'Float16' not understood"):
pd.array([1.0, 2.0], dtype="Float16")
def test_floating_array_constructor_copy():
values = np.array([1, 2, 3, 4], dtype="float64")
mask = np.array([False, False, False, True], dtype="bool")
result = FloatingArray(values, mask)
assert result._data is values
assert result._mask is mask
result = FloatingArray(values, mask, copy=True)
assert result._data is not values
assert result._mask is not mask
def test_to_array():
result = pd.array([0.1, 0.2, 0.3, 0.4])
expected = pd.array([0.1, 0.2, 0.3, 0.4], dtype="Float64")
tm.assert_extension_array_equal(result, expected)
@pytest.mark.parametrize(
"a, b",
[
([1, None], [1, pd.NA]),
([None], [pd.NA]),
([None, np.nan], [pd.NA, pd.NA]),
([1, np.nan], [1, pd.NA]),
([np.nan], [pd.NA]),
],
)
def test_to_array_none_is_nan(a, b):
result = pd.array(a, dtype="Float64")
expected = pd.array(b, dtype="Float64")
tm.assert_extension_array_equal(result, expected)
def test_to_array_mixed_integer_float():
result = pd.array([1, 2.0])
expected = pd.array([1.0, 2.0], dtype="Float64")
tm.assert_extension_array_equal(result, expected)
result = pd.array([1, None, 2.0])
expected = pd.array([1.0, None, 2.0], dtype="Float64")
tm.assert_extension_array_equal(result, expected)
@pytest.mark.parametrize(
"values",
[
["foo", "bar"],
"foo",
1,
1.0,
pd.date_range("20130101", periods=2),
np.array(["foo"]),
[[1, 2], [3, 4]],
[np.nan, {"a": 1}],
# GH#44514 all-NA case used to get quietly swapped out before checking ndim
np.array([pd.NA] * 6, dtype=object).reshape(3, 2),
],
)
def test_to_array_error(values):
# error in converting existing arrays to FloatingArray
msg = "|".join(
[
"cannot be converted to FloatingDtype",
"values must be a 1D list-like",
"Cannot pass scalar",
r"float\(\) argument must be a string or a (real )?number, not 'dict'",
"could not convert string to float: 'foo'",
]
)
with pytest.raises((TypeError, ValueError), match=msg):
pd.array(values, dtype="Float64")
@pytest.mark.parametrize("values", [["1", "2", None], ["1.5", "2", None]])
def test_construct_from_float_strings(values):
# see also test_to_integer_array_str
expected = pd.array([float(values[0]), 2, None], dtype="Float64")
res = pd.array(values, dtype="Float64")
tm.assert_extension_array_equal(res, expected)
res = FloatingArray._from_sequence(values)
tm.assert_extension_array_equal(res, expected)
def test_to_array_inferred_dtype():
# if values has dtype -> respect it
result = pd.array(np.array([1, 2], dtype="float32"))
assert result.dtype == Float32Dtype()
# if values have no dtype -> always float64
result = pd.array([1.0, 2.0])
assert result.dtype == Float64Dtype()
def test_to_array_dtype_keyword():
result = pd.array([1, 2], dtype="Float32")
assert result.dtype == Float32Dtype()
# if values has dtype -> override it
result = pd.array(np.array([1, 2], dtype="float32"), dtype="Float64")
assert result.dtype == Float64Dtype()
def test_to_array_integer():
result = pd.array([1, 2], dtype="Float64")
expected = pd.array([1.0, 2.0], dtype="Float64")
tm.assert_extension_array_equal(result, expected)
# for integer dtypes, the itemsize is not preserved
# TODO can we specify "floating" in general?
result = pd.array(np.array([1, 2], dtype="int32"), dtype="Float64")
assert result.dtype == Float64Dtype()
@pytest.mark.parametrize(
"bool_values, values, target_dtype, expected_dtype",
[
([False, True], [0, 1], Float64Dtype(), Float64Dtype()),
([False, True], [0, 1], "Float64", Float64Dtype()),
([False, True, np.nan], [0, 1, np.nan], Float64Dtype(), Float64Dtype()),
],
)
def test_to_array_bool(bool_values, values, target_dtype, expected_dtype):
result = pd.array(bool_values, dtype=target_dtype)
assert result.dtype == expected_dtype
expected = pd.array(values, dtype=target_dtype)
tm.assert_extension_array_equal(result, expected)
def test_series_from_float(data):
# construct from our dtype & string dtype
dtype = data.dtype
# from float
expected = pd.Series(data)
result = pd.Series(data.to_numpy(na_value=np.nan, dtype="float"), dtype=str(dtype))
tm.assert_series_equal(result, expected)
# from list
expected = pd.Series(data)
result = pd.Series(np.array(data).tolist(), dtype=str(dtype))
tm.assert_series_equal(result, expected)