ai-content-maker/.venv/Lib/site-packages/pandas/tests/strings/test_api.py

155 lines
4.9 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
import pytest
from pandas import (
DataFrame,
Index,
MultiIndex,
Series,
_testing as tm,
get_option,
)
from pandas.core import strings as strings
def test_api(any_string_dtype):
# GH 6106, GH 9322
assert Series.str is strings.StringMethods
assert isinstance(Series([""], dtype=any_string_dtype).str, strings.StringMethods)
def test_api_mi_raises():
# GH 23679
mi = MultiIndex.from_arrays([["a", "b", "c"]])
msg = "Can only use .str accessor with Index, not MultiIndex"
with pytest.raises(AttributeError, match=msg):
mi.str
assert not hasattr(mi, "str")
@pytest.mark.parametrize("dtype", [object, "category"])
def test_api_per_dtype(index_or_series, dtype, any_skipna_inferred_dtype):
# one instance of parametrized fixture
box = index_or_series
inferred_dtype, values = any_skipna_inferred_dtype
t = box(values, dtype=dtype) # explicit dtype to avoid casting
types_passing_constructor = [
"string",
"unicode",
"empty",
"bytes",
"mixed",
"mixed-integer",
]
if inferred_dtype in types_passing_constructor:
# GH 6106
assert isinstance(t.str, strings.StringMethods)
else:
# GH 9184, GH 23011, GH 23163
msg = "Can only use .str accessor with string values.*"
with pytest.raises(AttributeError, match=msg):
t.str
assert not hasattr(t, "str")
@pytest.mark.parametrize("dtype", [object, "category"])
def test_api_per_method(
index_or_series,
dtype,
any_allowed_skipna_inferred_dtype,
any_string_method,
request,
):
# this test does not check correctness of the different methods,
# just that the methods work on the specified (inferred) dtypes,
# and raise on all others
box = index_or_series
# one instance of each parametrized fixture
inferred_dtype, values = any_allowed_skipna_inferred_dtype
method_name, args, kwargs = any_string_method
reason = None
if box is Index and values.size == 0:
if method_name in ["partition", "rpartition"] and kwargs.get("expand", True):
raises = TypeError
reason = "Method cannot deal with empty Index"
elif method_name == "split" and kwargs.get("expand", None):
raises = TypeError
reason = "Split fails on empty Series when expand=True"
elif method_name == "get_dummies":
raises = ValueError
reason = "Need to fortify get_dummies corner cases"
elif (
box is Index
and inferred_dtype == "empty"
and dtype == object
and method_name == "get_dummies"
):
raises = ValueError
reason = "Need to fortify get_dummies corner cases"
if reason is not None:
mark = pytest.mark.xfail(raises=raises, reason=reason)
request.node.add_marker(mark)
t = box(values, dtype=dtype) # explicit dtype to avoid casting
method = getattr(t.str, method_name)
bytes_allowed = method_name in ["decode", "get", "len", "slice"]
# as of v0.23.4, all methods except 'cat' are very lenient with the
# allowed data types, just returning NaN for entries that error.
# This could be changed with an 'errors'-kwarg to the `str`-accessor,
# see discussion in GH 13877
mixed_allowed = method_name not in ["cat"]
allowed_types = (
["string", "unicode", "empty"]
+ ["bytes"] * bytes_allowed
+ ["mixed", "mixed-integer"] * mixed_allowed
)
if inferred_dtype in allowed_types:
# xref GH 23555, GH 23556
method(*args, **kwargs) # works!
else:
# GH 23011, GH 23163
msg = (
f"Cannot use .str.{method_name} with values of "
f"inferred dtype {repr(inferred_dtype)}."
)
with pytest.raises(TypeError, match=msg):
method(*args, **kwargs)
def test_api_for_categorical(any_string_method, any_string_dtype, request):
# https://github.com/pandas-dev/pandas/issues/10661
if any_string_dtype == "string[pyarrow]" or (
any_string_dtype == "string" and get_option("string_storage") == "pyarrow"
):
# unsupported operand type(s) for +: 'ArrowStringArray' and 'str'
mark = pytest.mark.xfail(raises=NotImplementedError, reason="Not Implemented")
request.node.add_marker(mark)
s = Series(list("aabb"), dtype=any_string_dtype)
s = s + " " + s
c = s.astype("category")
assert isinstance(c.str, strings.StringMethods)
method_name, args, kwargs = any_string_method
result = getattr(c.str, method_name)(*args, **kwargs)
expected = getattr(s.astype("object").str, method_name)(*args, **kwargs)
if isinstance(result, DataFrame):
tm.assert_frame_equal(result, expected)
elif isinstance(result, Series):
tm.assert_series_equal(result, expected)
else:
# str.cat(others=None) returns string, for example
assert result == expected