ai-content-maker/.venv/Lib/site-packages/scipy/io/matlab/tests/test_mio.py

1340 lines
44 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
''' Nose test generators
Need function load / save / roundtrip tests
'''
import os
from collections import OrderedDict
from os.path import join as pjoin, dirname
from glob import glob
from io import BytesIO
import re
from tempfile import mkdtemp
import warnings
import shutil
import gzip
from numpy.testing import (assert_array_equal, assert_array_almost_equal,
assert_equal, assert_, assert_warns, assert_allclose)
import pytest
from pytest import raises as assert_raises
import numpy as np
from numpy import array
import scipy.sparse as SP
import scipy.io
from scipy.io.matlab import MatlabOpaque, MatlabFunction, MatlabObject
import scipy.io.matlab._byteordercodes as boc
from scipy.io.matlab._miobase import (
matdims, MatWriteError, MatReadError, matfile_version)
from scipy.io.matlab._mio import mat_reader_factory, loadmat, savemat, whosmat
from scipy.io.matlab._mio5 import (
MatFile5Writer, MatFile5Reader, varmats_from_mat, to_writeable,
EmptyStructMarker)
import scipy.io.matlab._mio5_params as mio5p
from scipy._lib._util import VisibleDeprecationWarning
test_data_path = pjoin(dirname(__file__), 'data')
def mlarr(*args, **kwargs):
"""Convenience function to return matlab-compatible 2-D array."""
arr = np.array(*args, **kwargs)
arr.shape = matdims(arr)
return arr
# Define cases to test
theta = np.pi/4*np.arange(9,dtype=float).reshape(1,9)
case_table4 = [
{'name': 'double',
'classes': {'testdouble': 'double'},
'expected': {'testdouble': theta}
}]
case_table4.append(
{'name': 'string',
'classes': {'teststring': 'char'},
'expected': {'teststring':
array(['"Do nine men interpret?" "Nine men," I nod.'])}
})
case_table4.append(
{'name': 'complex',
'classes': {'testcomplex': 'double'},
'expected': {'testcomplex': np.cos(theta) + 1j*np.sin(theta)}
})
A = np.zeros((3,5))
A[0] = list(range(1,6))
A[:,0] = list(range(1,4))
case_table4.append(
{'name': 'matrix',
'classes': {'testmatrix': 'double'},
'expected': {'testmatrix': A},
})
case_table4.append(
{'name': 'sparse',
'classes': {'testsparse': 'sparse'},
'expected': {'testsparse': SP.coo_matrix(A)},
})
B = A.astype(complex)
B[0,0] += 1j
case_table4.append(
{'name': 'sparsecomplex',
'classes': {'testsparsecomplex': 'sparse'},
'expected': {'testsparsecomplex': SP.coo_matrix(B)},
})
case_table4.append(
{'name': 'multi',
'classes': {'theta': 'double', 'a': 'double'},
'expected': {'theta': theta, 'a': A},
})
case_table4.append(
{'name': 'minus',
'classes': {'testminus': 'double'},
'expected': {'testminus': mlarr(-1)},
})
case_table4.append(
{'name': 'onechar',
'classes': {'testonechar': 'char'},
'expected': {'testonechar': array(['r'])},
})
# Cell arrays stored as object arrays
CA = mlarr(( # tuple for object array creation
[],
mlarr([1]),
mlarr([[1,2]]),
mlarr([[1,2,3]])), dtype=object).reshape(1,-1)
CA[0,0] = array(
['This cell contains this string and 3 arrays of increasing length'])
case_table5 = [
{'name': 'cell',
'classes': {'testcell': 'cell'},
'expected': {'testcell': CA}}]
CAE = mlarr(( # tuple for object array creation
mlarr(1),
mlarr(2),
mlarr([]),
mlarr([]),
mlarr(3)), dtype=object).reshape(1,-1)
objarr = np.empty((1,1),dtype=object)
objarr[0,0] = mlarr(1)
case_table5.append(
{'name': 'scalarcell',
'classes': {'testscalarcell': 'cell'},
'expected': {'testscalarcell': objarr}
})
case_table5.append(
{'name': 'emptycell',
'classes': {'testemptycell': 'cell'},
'expected': {'testemptycell': CAE}})
case_table5.append(
{'name': 'stringarray',
'classes': {'teststringarray': 'char'},
'expected': {'teststringarray': array(
['one ', 'two ', 'three'])},
})
case_table5.append(
{'name': '3dmatrix',
'classes': {'test3dmatrix': 'double'},
'expected': {
'test3dmatrix': np.transpose(np.reshape(list(range(1,25)), (4,3,2)))}
})
st_sub_arr = array([np.sqrt(2),np.exp(1),np.pi]).reshape(1,3)
dtype = [(n, object) for n in ['stringfield', 'doublefield', 'complexfield']]
st1 = np.zeros((1,1), dtype)
st1['stringfield'][0,0] = array(['Rats live on no evil star.'])
st1['doublefield'][0,0] = st_sub_arr
st1['complexfield'][0,0] = st_sub_arr * (1 + 1j)
case_table5.append(
{'name': 'struct',
'classes': {'teststruct': 'struct'},
'expected': {'teststruct': st1}
})
CN = np.zeros((1,2), dtype=object)
CN[0,0] = mlarr(1)
CN[0,1] = np.zeros((1,3), dtype=object)
CN[0,1][0,0] = mlarr(2, dtype=np.uint8)
CN[0,1][0,1] = mlarr([[3]], dtype=np.uint8)
CN[0,1][0,2] = np.zeros((1,2), dtype=object)
CN[0,1][0,2][0,0] = mlarr(4, dtype=np.uint8)
CN[0,1][0,2][0,1] = mlarr(5, dtype=np.uint8)
case_table5.append(
{'name': 'cellnest',
'classes': {'testcellnest': 'cell'},
'expected': {'testcellnest': CN},
})
st2 = np.empty((1,1), dtype=[(n, object) for n in ['one', 'two']])
st2[0,0]['one'] = mlarr(1)
st2[0,0]['two'] = np.empty((1,1), dtype=[('three', object)])
st2[0,0]['two'][0,0]['three'] = array(['number 3'])
case_table5.append(
{'name': 'structnest',
'classes': {'teststructnest': 'struct'},
'expected': {'teststructnest': st2}
})
a = np.empty((1,2), dtype=[(n, object) for n in ['one', 'two']])
a[0,0]['one'] = mlarr(1)
a[0,0]['two'] = mlarr(2)
a[0,1]['one'] = array(['number 1'])
a[0,1]['two'] = array(['number 2'])
case_table5.append(
{'name': 'structarr',
'classes': {'teststructarr': 'struct'},
'expected': {'teststructarr': a}
})
ODT = np.dtype([(n, object) for n in
['expr', 'inputExpr', 'args',
'isEmpty', 'numArgs', 'version']])
MO = MatlabObject(np.zeros((1,1), dtype=ODT), 'inline')
m0 = MO[0,0]
m0['expr'] = array(['x'])
m0['inputExpr'] = array([' x = INLINE_INPUTS_{1};'])
m0['args'] = array(['x'])
m0['isEmpty'] = mlarr(0)
m0['numArgs'] = mlarr(1)
m0['version'] = mlarr(1)
case_table5.append(
{'name': 'object',
'classes': {'testobject': 'object'},
'expected': {'testobject': MO}
})
fp_u_str = open(pjoin(test_data_path, 'japanese_utf8.txt'), 'rb')
u_str = fp_u_str.read().decode('utf-8')
fp_u_str.close()
case_table5.append(
{'name': 'unicode',
'classes': {'testunicode': 'char'},
'expected': {'testunicode': array([u_str])}
})
case_table5.append(
{'name': 'sparse',
'classes': {'testsparse': 'sparse'},
'expected': {'testsparse': SP.coo_matrix(A)},
})
case_table5.append(
{'name': 'sparsecomplex',
'classes': {'testsparsecomplex': 'sparse'},
'expected': {'testsparsecomplex': SP.coo_matrix(B)},
})
case_table5.append(
{'name': 'bool',
'classes': {'testbools': 'logical'},
'expected': {'testbools':
array([[True], [False]])},
})
case_table5_rt = case_table5[:]
# Inline functions can't be concatenated in matlab, so RT only
case_table5_rt.append(
{'name': 'objectarray',
'classes': {'testobjectarray': 'object'},
'expected': {'testobjectarray': np.repeat(MO, 2).reshape(1,2)}})
def types_compatible(var1, var2):
"""Check if types are same or compatible.
0-D numpy scalars are compatible with bare python scalars.
"""
type1 = type(var1)
type2 = type(var2)
if type1 is type2:
return True
if type1 is np.ndarray and var1.shape == ():
return type(var1.item()) is type2
if type2 is np.ndarray and var2.shape == ():
return type(var2.item()) is type1
return False
def _check_level(label, expected, actual):
""" Check one level of a potentially nested array """
if SP.issparse(expected): # allow different types of sparse matrices
assert_(SP.issparse(actual))
assert_array_almost_equal(actual.toarray(),
expected.toarray(),
err_msg=label,
decimal=5)
return
# Check types are as expected
assert_(types_compatible(expected, actual),
f"Expected type {type(expected)}, got {type(actual)} at {label}")
# A field in a record array may not be an ndarray
# A scalar from a record array will be type np.void
if not isinstance(expected,
(np.void, np.ndarray, MatlabObject)):
assert_equal(expected, actual)
return
# This is an ndarray-like thing
assert_(expected.shape == actual.shape,
msg=f'Expected shape {expected.shape}, got {actual.shape} at {label}')
ex_dtype = expected.dtype
if ex_dtype.hasobject: # array of objects
if isinstance(expected, MatlabObject):
assert_equal(expected.classname, actual.classname)
for i, ev in enumerate(expected):
level_label = "%s, [%d], " % (label, i)
_check_level(level_label, ev, actual[i])
return
if ex_dtype.fields: # probably recarray
for fn in ex_dtype.fields:
level_label = f"{label}, field {fn}, "
_check_level(level_label,
expected[fn], actual[fn])
return
if ex_dtype.type in (str, # string or bool
np.str_,
np.bool_):
assert_equal(actual, expected, err_msg=label)
return
# Something numeric
assert_array_almost_equal(actual, expected, err_msg=label, decimal=5)
def _load_check_case(name, files, case):
for file_name in files:
matdict = loadmat(file_name, struct_as_record=True)
label = f"test {name}; file {file_name}"
for k, expected in case.items():
k_label = f"{label}, variable {k}"
assert_(k in matdict, "Missing key at %s" % k_label)
_check_level(k_label, expected, matdict[k])
def _whos_check_case(name, files, case, classes):
for file_name in files:
label = f"test {name}; file {file_name}"
whos = whosmat(file_name)
expected_whos = [
(k, expected.shape, classes[k]) for k, expected in case.items()]
whos.sort()
expected_whos.sort()
assert_equal(whos, expected_whos,
f"{label}: {whos!r} != {expected_whos!r}"
)
# Round trip tests
def _rt_check_case(name, expected, format):
mat_stream = BytesIO()
savemat(mat_stream, expected, format=format)
mat_stream.seek(0)
_load_check_case(name, [mat_stream], expected)
# generator for tests
def _cases(version, filt='test%(name)s_*.mat'):
if version == '4':
cases = case_table4
elif version == '5':
cases = case_table5
else:
assert version == '5_rt'
cases = case_table5_rt
for case in cases:
name = case['name']
expected = case['expected']
if filt is None:
files = None
else:
use_filt = pjoin(test_data_path, filt % dict(name=name))
files = glob(use_filt)
assert len(files) > 0, \
f"No files for test {name} using filter {filt}"
classes = case['classes']
yield name, files, expected, classes
@pytest.mark.parametrize('version', ('4', '5'))
def test_load(version):
for case in _cases(version):
_load_check_case(*case[:3])
@pytest.mark.parametrize('version', ('4', '5'))
def test_whos(version):
for case in _cases(version):
_whos_check_case(*case)
# generator for round trip tests
@pytest.mark.parametrize('version, fmts', [
('4', ['4', '5']),
('5_rt', ['5']),
])
def test_round_trip(version, fmts):
for case in _cases(version, filt=None):
for fmt in fmts:
_rt_check_case(case[0], case[2], fmt)
def test_gzip_simple():
xdense = np.zeros((20,20))
xdense[2,3] = 2.3
xdense[4,5] = 4.5
x = SP.csc_matrix(xdense)
name = 'gzip_test'
expected = {'x':x}
format = '4'
tmpdir = mkdtemp()
try:
fname = pjoin(tmpdir,name)
mat_stream = gzip.open(fname, mode='wb')
savemat(mat_stream, expected, format=format)
mat_stream.close()
mat_stream = gzip.open(fname, mode='rb')
actual = loadmat(mat_stream, struct_as_record=True)
mat_stream.close()
finally:
shutil.rmtree(tmpdir)
assert_array_almost_equal(actual['x'].toarray(),
expected['x'].toarray(),
err_msg=repr(actual))
def test_multiple_open():
# Ticket #1039, on Windows: check that files are not left open
tmpdir = mkdtemp()
try:
x = dict(x=np.zeros((2, 2)))
fname = pjoin(tmpdir, "a.mat")
# Check that file is not left open
savemat(fname, x)
os.unlink(fname)
savemat(fname, x)
loadmat(fname)
os.unlink(fname)
# Check that stream is left open
f = open(fname, 'wb')
savemat(f, x)
f.seek(0)
f.close()
f = open(fname, 'rb')
loadmat(f)
f.seek(0)
f.close()
finally:
shutil.rmtree(tmpdir)
def test_mat73():
# Check any hdf5 files raise an error
filenames = glob(
pjoin(test_data_path, 'testhdf5*.mat'))
assert_(len(filenames) > 0)
for filename in filenames:
fp = open(filename, 'rb')
assert_raises(NotImplementedError,
loadmat,
fp,
struct_as_record=True)
fp.close()
def test_warnings():
# This test is an echo of the previous behavior, which was to raise a
# warning if the user triggered a search for mat files on the Python system
# path. We can remove the test in the next version after upcoming (0.13).
fname = pjoin(test_data_path, 'testdouble_7.1_GLNX86.mat')
with warnings.catch_warnings():
warnings.simplefilter('error')
# This should not generate a warning
loadmat(fname, struct_as_record=True)
# This neither
loadmat(fname, struct_as_record=False)
def test_regression_653():
# Saving a dictionary with only invalid keys used to raise an error. Now we
# save this as an empty struct in matlab space.
sio = BytesIO()
savemat(sio, {'d':{1:2}}, format='5')
back = loadmat(sio)['d']
# Check we got an empty struct equivalent
assert_equal(back.shape, (1,1))
assert_equal(back.dtype, np.dtype(object))
assert_(back[0,0] is None)
def test_structname_len():
# Test limit for length of field names in structs
lim = 31
fldname = 'a' * lim
st1 = np.zeros((1,1), dtype=[(fldname, object)])
savemat(BytesIO(), {'longstruct': st1}, format='5')
fldname = 'a' * (lim+1)
st1 = np.zeros((1,1), dtype=[(fldname, object)])
assert_raises(ValueError, savemat, BytesIO(),
{'longstruct': st1}, format='5')
def test_4_and_long_field_names_incompatible():
# Long field names option not supported in 4
my_struct = np.zeros((1,1),dtype=[('my_fieldname',object)])
assert_raises(ValueError, savemat, BytesIO(),
{'my_struct':my_struct}, format='4', long_field_names=True)
def test_long_field_names():
# Test limit for length of field names in structs
lim = 63
fldname = 'a' * lim
st1 = np.zeros((1,1), dtype=[(fldname, object)])
savemat(BytesIO(), {'longstruct': st1}, format='5',long_field_names=True)
fldname = 'a' * (lim+1)
st1 = np.zeros((1,1), dtype=[(fldname, object)])
assert_raises(ValueError, savemat, BytesIO(),
{'longstruct': st1}, format='5',long_field_names=True)
def test_long_field_names_in_struct():
# Regression test - long_field_names was erased if you passed a struct
# within a struct
lim = 63
fldname = 'a' * lim
cell = np.ndarray((1,2),dtype=object)
st1 = np.zeros((1,1), dtype=[(fldname, object)])
cell[0,0] = st1
cell[0,1] = st1
savemat(BytesIO(), {'longstruct': cell}, format='5',long_field_names=True)
#
# Check to make sure it fails with long field names off
#
assert_raises(ValueError, savemat, BytesIO(),
{'longstruct': cell}, format='5', long_field_names=False)
def test_cell_with_one_thing_in_it():
# Regression test - make a cell array that's 1 x 2 and put two
# strings in it. It works. Make a cell array that's 1 x 1 and put
# a string in it. It should work but, in the old days, it didn't.
cells = np.ndarray((1,2),dtype=object)
cells[0,0] = 'Hello'
cells[0,1] = 'World'
savemat(BytesIO(), {'x': cells}, format='5')
cells = np.ndarray((1,1),dtype=object)
cells[0,0] = 'Hello, world'
savemat(BytesIO(), {'x': cells}, format='5')
def test_writer_properties():
# Tests getting, setting of properties of matrix writer
mfw = MatFile5Writer(BytesIO())
assert_equal(mfw.global_vars, [])
mfw.global_vars = ['avar']
assert_equal(mfw.global_vars, ['avar'])
assert_equal(mfw.unicode_strings, False)
mfw.unicode_strings = True
assert_equal(mfw.unicode_strings, True)
assert_equal(mfw.long_field_names, False)
mfw.long_field_names = True
assert_equal(mfw.long_field_names, True)
def test_use_small_element():
# Test whether we're using small data element or not
sio = BytesIO()
wtr = MatFile5Writer(sio)
# First check size for no sde for name
arr = np.zeros(10)
wtr.put_variables({'aaaaa': arr})
w_sz = len(sio.getvalue())
# Check small name results in largish difference in size
sio.truncate(0)
sio.seek(0)
wtr.put_variables({'aaaa': arr})
assert_(w_sz - len(sio.getvalue()) > 4)
# Whereas increasing name size makes less difference
sio.truncate(0)
sio.seek(0)
wtr.put_variables({'aaaaaa': arr})
assert_(len(sio.getvalue()) - w_sz < 4)
def test_save_dict():
# Test that both dict and OrderedDict can be saved (as recarray),
# loaded as matstruct, and preserve order
ab_exp = np.array([[(1, 2)]], dtype=[('a', object), ('b', object)])
for dict_type in (dict, OrderedDict):
# Initialize with tuples to keep order
d = dict_type([('a', 1), ('b', 2)])
stream = BytesIO()
savemat(stream, {'dict': d})
stream.seek(0)
vals = loadmat(stream)['dict']
assert_equal(vals.dtype.names, ('a', 'b'))
assert_array_equal(vals, ab_exp)
def test_1d_shape():
# New 5 behavior is 1D -> row vector
arr = np.arange(5)
for format in ('4', '5'):
# Column is the default
stream = BytesIO()
savemat(stream, {'oned': arr}, format=format)
vals = loadmat(stream)
assert_equal(vals['oned'].shape, (1, 5))
# can be explicitly 'column' for oned_as
stream = BytesIO()
savemat(stream, {'oned':arr},
format=format,
oned_as='column')
vals = loadmat(stream)
assert_equal(vals['oned'].shape, (5,1))
# but different from 'row'
stream = BytesIO()
savemat(stream, {'oned':arr},
format=format,
oned_as='row')
vals = loadmat(stream)
assert_equal(vals['oned'].shape, (1,5))
def test_compression():
arr = np.zeros(100).reshape((5,20))
arr[2,10] = 1
stream = BytesIO()
savemat(stream, {'arr':arr})
raw_len = len(stream.getvalue())
vals = loadmat(stream)
assert_array_equal(vals['arr'], arr)
stream = BytesIO()
savemat(stream, {'arr':arr}, do_compression=True)
compressed_len = len(stream.getvalue())
vals = loadmat(stream)
assert_array_equal(vals['arr'], arr)
assert_(raw_len > compressed_len)
# Concatenate, test later
arr2 = arr.copy()
arr2[0,0] = 1
stream = BytesIO()
savemat(stream, {'arr':arr, 'arr2':arr2}, do_compression=False)
vals = loadmat(stream)
assert_array_equal(vals['arr2'], arr2)
stream = BytesIO()
savemat(stream, {'arr':arr, 'arr2':arr2}, do_compression=True)
vals = loadmat(stream)
assert_array_equal(vals['arr2'], arr2)
def test_single_object():
stream = BytesIO()
savemat(stream, {'A':np.array(1, dtype=object)})
def test_skip_variable():
# Test skipping over the first of two variables in a MAT file
# using mat_reader_factory and put_variables to read them in.
#
# This is a regression test of a problem that's caused by
# using the compressed file reader seek instead of the raw file
# I/O seek when skipping over a compressed chunk.
#
# The problem arises when the chunk is large: this file has
# a 256x256 array of random (uncompressible) doubles.
#
filename = pjoin(test_data_path,'test_skip_variable.mat')
#
# Prove that it loads with loadmat
#
d = loadmat(filename, struct_as_record=True)
assert_('first' in d)
assert_('second' in d)
#
# Make the factory
#
factory, file_opened = mat_reader_factory(filename, struct_as_record=True)
#
# This is where the factory breaks with an error in MatMatrixGetter.to_next
#
d = factory.get_variables('second')
assert_('second' in d)
factory.mat_stream.close()
def test_empty_struct():
# ticket 885
filename = pjoin(test_data_path,'test_empty_struct.mat')
# before ticket fix, this would crash with ValueError, empty data
# type
d = loadmat(filename, struct_as_record=True)
a = d['a']
assert_equal(a.shape, (1,1))
assert_equal(a.dtype, np.dtype(object))
assert_(a[0,0] is None)
stream = BytesIO()
arr = np.array((), dtype='U')
# before ticket fix, this used to give data type not understood
savemat(stream, {'arr':arr})
d = loadmat(stream)
a2 = d['arr']
assert_array_equal(a2, arr)
def test_save_empty_dict():
# saving empty dict also gives empty struct
stream = BytesIO()
savemat(stream, {'arr': {}})
d = loadmat(stream)
a = d['arr']
assert_equal(a.shape, (1,1))
assert_equal(a.dtype, np.dtype(object))
assert_(a[0,0] is None)
def assert_any_equal(output, alternatives):
""" Assert `output` is equal to at least one element in `alternatives`
"""
one_equal = False
for expected in alternatives:
if np.all(output == expected):
one_equal = True
break
assert_(one_equal)
def test_to_writeable():
# Test to_writeable function
res = to_writeable(np.array([1])) # pass through ndarrays
assert_equal(res.shape, (1,))
assert_array_equal(res, 1)
# Dict fields can be written in any order
expected1 = np.array([(1, 2)], dtype=[('a', '|O8'), ('b', '|O8')])
expected2 = np.array([(2, 1)], dtype=[('b', '|O8'), ('a', '|O8')])
alternatives = (expected1, expected2)
assert_any_equal(to_writeable({'a':1,'b':2}), alternatives)
# Fields with underscores discarded
assert_any_equal(to_writeable({'a':1,'b':2, '_c':3}), alternatives)
# Not-string fields discarded
assert_any_equal(to_writeable({'a':1,'b':2, 100:3}), alternatives)
# String fields that are valid Python identifiers discarded
assert_any_equal(to_writeable({'a':1,'b':2, '99':3}), alternatives)
# Object with field names is equivalent
class klass:
pass
c = klass
c.a = 1
c.b = 2
assert_any_equal(to_writeable(c), alternatives)
# empty list and tuple go to empty array
res = to_writeable([])
assert_equal(res.shape, (0,))
assert_equal(res.dtype.type, np.float64)
res = to_writeable(())
assert_equal(res.shape, (0,))
assert_equal(res.dtype.type, np.float64)
# None -> None
assert_(to_writeable(None) is None)
# String to strings
assert_equal(to_writeable('a string').dtype.type, np.str_)
# Scalars to numpy to NumPy scalars
res = to_writeable(1)
assert_equal(res.shape, ())
assert_equal(res.dtype.type, np.array(1).dtype.type)
assert_array_equal(res, 1)
# Empty dict returns EmptyStructMarker
assert_(to_writeable({}) is EmptyStructMarker)
# Object does not have (even empty) __dict__
assert_(to_writeable(object()) is None)
# Custom object does have empty __dict__, returns EmptyStructMarker
class C:
pass
assert_(to_writeable(c()) is EmptyStructMarker)
# dict keys with legal characters are convertible
res = to_writeable({'a': 1})['a']
assert_equal(res.shape, (1,))
assert_equal(res.dtype.type, np.object_)
# Only fields with illegal characters, falls back to EmptyStruct
assert_(to_writeable({'1':1}) is EmptyStructMarker)
assert_(to_writeable({'_a':1}) is EmptyStructMarker)
# Unless there are valid fields, in which case structured array
assert_equal(to_writeable({'1':1, 'f': 2}),
np.array([(2,)], dtype=[('f', '|O8')]))
def test_recarray():
# check roundtrip of structured array
dt = [('f1', 'f8'),
('f2', 'S10')]
arr = np.zeros((2,), dtype=dt)
arr[0]['f1'] = 0.5
arr[0]['f2'] = 'python'
arr[1]['f1'] = 99
arr[1]['f2'] = 'not perl'
stream = BytesIO()
savemat(stream, {'arr': arr})
d = loadmat(stream, struct_as_record=False)
a20 = d['arr'][0,0]
assert_equal(a20.f1, 0.5)
assert_equal(a20.f2, 'python')
d = loadmat(stream, struct_as_record=True)
a20 = d['arr'][0,0]
assert_equal(a20['f1'], 0.5)
assert_equal(a20['f2'], 'python')
# structs always come back as object types
assert_equal(a20.dtype, np.dtype([('f1', 'O'),
('f2', 'O')]))
a21 = d['arr'].flat[1]
assert_equal(a21['f1'], 99)
assert_equal(a21['f2'], 'not perl')
def test_save_object():
class C:
pass
c = C()
c.field1 = 1
c.field2 = 'a string'
stream = BytesIO()
savemat(stream, {'c': c})
d = loadmat(stream, struct_as_record=False)
c2 = d['c'][0,0]
assert_equal(c2.field1, 1)
assert_equal(c2.field2, 'a string')
d = loadmat(stream, struct_as_record=True)
c2 = d['c'][0,0]
assert_equal(c2['field1'], 1)
assert_equal(c2['field2'], 'a string')
def test_read_opts():
# tests if read is seeing option sets, at initialization and after
# initialization
arr = np.arange(6).reshape(1,6)
stream = BytesIO()
savemat(stream, {'a': arr})
rdr = MatFile5Reader(stream)
back_dict = rdr.get_variables()
rarr = back_dict['a']
assert_array_equal(rarr, arr)
rdr = MatFile5Reader(stream, squeeze_me=True)
assert_array_equal(rdr.get_variables()['a'], arr.reshape((6,)))
rdr.squeeze_me = False
assert_array_equal(rarr, arr)
rdr = MatFile5Reader(stream, byte_order=boc.native_code)
assert_array_equal(rdr.get_variables()['a'], arr)
# inverted byte code leads to error on read because of swapped
# header etc.
rdr = MatFile5Reader(stream, byte_order=boc.swapped_code)
assert_raises(Exception, rdr.get_variables)
rdr.byte_order = boc.native_code
assert_array_equal(rdr.get_variables()['a'], arr)
arr = np.array(['a string'])
stream.truncate(0)
stream.seek(0)
savemat(stream, {'a': arr})
rdr = MatFile5Reader(stream)
assert_array_equal(rdr.get_variables()['a'], arr)
rdr = MatFile5Reader(stream, chars_as_strings=False)
carr = np.atleast_2d(np.array(list(arr.item()), dtype='U1'))
assert_array_equal(rdr.get_variables()['a'], carr)
rdr.chars_as_strings = True
assert_array_equal(rdr.get_variables()['a'], arr)
def test_empty_string():
# make sure reading empty string does not raise error
estring_fname = pjoin(test_data_path, 'single_empty_string.mat')
fp = open(estring_fname, 'rb')
rdr = MatFile5Reader(fp)
d = rdr.get_variables()
fp.close()
assert_array_equal(d['a'], np.array([], dtype='U1'))
# Empty string round trip. Matlab cannot distinguish
# between a string array that is empty, and a string array
# containing a single empty string, because it stores strings as
# arrays of char. There is no way of having an array of char that
# is not empty, but contains an empty string.
stream = BytesIO()
savemat(stream, {'a': np.array([''])})
rdr = MatFile5Reader(stream)
d = rdr.get_variables()
assert_array_equal(d['a'], np.array([], dtype='U1'))
stream.truncate(0)
stream.seek(0)
savemat(stream, {'a': np.array([], dtype='U1')})
rdr = MatFile5Reader(stream)
d = rdr.get_variables()
assert_array_equal(d['a'], np.array([], dtype='U1'))
stream.close()
def test_corrupted_data():
import zlib
for exc, fname in [(ValueError, 'corrupted_zlib_data.mat'),
(zlib.error, 'corrupted_zlib_checksum.mat')]:
with open(pjoin(test_data_path, fname), 'rb') as fp:
rdr = MatFile5Reader(fp)
assert_raises(exc, rdr.get_variables)
def test_corrupted_data_check_can_be_disabled():
with open(pjoin(test_data_path, 'corrupted_zlib_data.mat'), 'rb') as fp:
rdr = MatFile5Reader(fp, verify_compressed_data_integrity=False)
rdr.get_variables()
def test_read_both_endian():
# make sure big- and little- endian data is read correctly
for fname in ('big_endian.mat', 'little_endian.mat'):
fp = open(pjoin(test_data_path, fname), 'rb')
rdr = MatFile5Reader(fp)
d = rdr.get_variables()
fp.close()
assert_array_equal(d['strings'],
np.array([['hello'],
['world']], dtype=object))
assert_array_equal(d['floats'],
np.array([[2., 3.],
[3., 4.]], dtype=np.float32))
def test_write_opposite_endian():
# We don't support writing opposite endian .mat files, but we need to behave
# correctly if the user supplies an other-endian NumPy array to write out.
float_arr = np.array([[2., 3.],
[3., 4.]])
int_arr = np.arange(6).reshape((2, 3))
uni_arr = np.array(['hello', 'world'], dtype='U')
stream = BytesIO()
savemat(stream, {
'floats': float_arr.byteswap().view(float_arr.dtype.newbyteorder()),
'ints': int_arr.byteswap().view(int_arr.dtype.newbyteorder()),
'uni_arr': uni_arr.byteswap().view(uni_arr.dtype.newbyteorder()),
})
rdr = MatFile5Reader(stream)
d = rdr.get_variables()
assert_array_equal(d['floats'], float_arr)
assert_array_equal(d['ints'], int_arr)
assert_array_equal(d['uni_arr'], uni_arr)
stream.close()
def test_logical_array():
# The roundtrip test doesn't verify that we load the data up with the
# correct (bool) dtype
with open(pjoin(test_data_path, 'testbool_8_WIN64.mat'), 'rb') as fobj:
rdr = MatFile5Reader(fobj, mat_dtype=True)
d = rdr.get_variables()
x = np.array([[True], [False]], dtype=np.bool_)
assert_array_equal(d['testbools'], x)
assert_equal(d['testbools'].dtype, x.dtype)
def test_logical_out_type():
# Confirm that bool type written as uint8, uint8 class
# See gh-4022
stream = BytesIO()
barr = np.array([False, True, False])
savemat(stream, {'barray': barr})
stream.seek(0)
reader = MatFile5Reader(stream)
reader.initialize_read()
reader.read_file_header()
hdr, _ = reader.read_var_header()
assert_equal(hdr.mclass, mio5p.mxUINT8_CLASS)
assert_equal(hdr.is_logical, True)
var = reader.read_var_array(hdr, False)
assert_equal(var.dtype.type, np.uint8)
def test_roundtrip_zero_dimensions():
stream = BytesIO()
savemat(stream, {'d':np.empty((10, 0))})
d = loadmat(stream)
assert d['d'].shape == (10, 0)
def test_mat4_3d():
# test behavior when writing 3-D arrays to matlab 4 files
stream = BytesIO()
arr = np.arange(24).reshape((2,3,4))
assert_raises(ValueError, savemat, stream, {'a': arr}, True, '4')
def test_func_read():
func_eg = pjoin(test_data_path, 'testfunc_7.4_GLNX86.mat')
fp = open(func_eg, 'rb')
rdr = MatFile5Reader(fp)
d = rdr.get_variables()
fp.close()
assert isinstance(d['testfunc'], MatlabFunction)
stream = BytesIO()
wtr = MatFile5Writer(stream)
assert_raises(MatWriteError, wtr.put_variables, d)
def test_mat_dtype():
double_eg = pjoin(test_data_path, 'testmatrix_6.1_SOL2.mat')
fp = open(double_eg, 'rb')
rdr = MatFile5Reader(fp, mat_dtype=False)
d = rdr.get_variables()
fp.close()
assert_equal(d['testmatrix'].dtype.kind, 'u')
fp = open(double_eg, 'rb')
rdr = MatFile5Reader(fp, mat_dtype=True)
d = rdr.get_variables()
fp.close()
assert_equal(d['testmatrix'].dtype.kind, 'f')
def test_sparse_in_struct():
# reproduces bug found by DC where Cython code was insisting on
# ndarray return type, but getting sparse matrix
st = {'sparsefield': SP.coo_matrix(np.eye(4))}
stream = BytesIO()
savemat(stream, {'a':st})
d = loadmat(stream, struct_as_record=True)
assert_array_equal(d['a'][0, 0]['sparsefield'].toarray(), np.eye(4))
def test_mat_struct_squeeze():
stream = BytesIO()
in_d = {'st':{'one':1, 'two':2}}
savemat(stream, in_d)
# no error without squeeze
loadmat(stream, struct_as_record=False)
# previous error was with squeeze, with mat_struct
loadmat(stream, struct_as_record=False, squeeze_me=True)
def test_scalar_squeeze():
stream = BytesIO()
in_d = {'scalar': [[0.1]], 'string': 'my name', 'st':{'one':1, 'two':2}}
savemat(stream, in_d)
out_d = loadmat(stream, squeeze_me=True)
assert_(isinstance(out_d['scalar'], float))
assert_(isinstance(out_d['string'], str))
assert_(isinstance(out_d['st'], np.ndarray))
def test_str_round():
# from report by Angus McMorland on mailing list 3 May 2010
stream = BytesIO()
in_arr = np.array(['Hello', 'Foob'])
out_arr = np.array(['Hello', 'Foob '])
savemat(stream, dict(a=in_arr))
res = loadmat(stream)
# resulted in ['HloolFoa', 'elWrdobr']
assert_array_equal(res['a'], out_arr)
stream.truncate(0)
stream.seek(0)
# Make Fortran ordered version of string
in_str = in_arr.tobytes(order='F')
in_from_str = np.ndarray(shape=a.shape,
dtype=in_arr.dtype,
order='F',
buffer=in_str)
savemat(stream, dict(a=in_from_str))
assert_array_equal(res['a'], out_arr)
# unicode save did lead to buffer too small error
stream.truncate(0)
stream.seek(0)
in_arr_u = in_arr.astype('U')
out_arr_u = out_arr.astype('U')
savemat(stream, {'a': in_arr_u})
res = loadmat(stream)
assert_array_equal(res['a'], out_arr_u)
def test_fieldnames():
# Check that field names are as expected
stream = BytesIO()
savemat(stream, {'a': {'a':1, 'b':2}})
res = loadmat(stream)
field_names = res['a'].dtype.names
assert_equal(set(field_names), {'a', 'b'})
def test_loadmat_varnames():
# Test that we can get just one variable from a mat file using loadmat
mat5_sys_names = ['__globals__',
'__header__',
'__version__']
for eg_file, sys_v_names in (
(pjoin(test_data_path, 'testmulti_4.2c_SOL2.mat'), []), (pjoin(
test_data_path, 'testmulti_7.4_GLNX86.mat'), mat5_sys_names)):
vars = loadmat(eg_file)
assert_equal(set(vars.keys()), set(['a', 'theta'] + sys_v_names))
vars = loadmat(eg_file, variable_names='a')
assert_equal(set(vars.keys()), set(['a'] + sys_v_names))
vars = loadmat(eg_file, variable_names=['a'])
assert_equal(set(vars.keys()), set(['a'] + sys_v_names))
vars = loadmat(eg_file, variable_names=['theta'])
assert_equal(set(vars.keys()), set(['theta'] + sys_v_names))
vars = loadmat(eg_file, variable_names=('theta',))
assert_equal(set(vars.keys()), set(['theta'] + sys_v_names))
vars = loadmat(eg_file, variable_names=[])
assert_equal(set(vars.keys()), set(sys_v_names))
vnames = ['theta']
vars = loadmat(eg_file, variable_names=vnames)
assert_equal(vnames, ['theta'])
def test_round_types():
# Check that saving, loading preserves dtype in most cases
arr = np.arange(10)
stream = BytesIO()
for dts in ('f8','f4','i8','i4','i2','i1',
'u8','u4','u2','u1','c16','c8'):
stream.truncate(0)
stream.seek(0) # needed for BytesIO in Python 3
savemat(stream, {'arr': arr.astype(dts)})
vars = loadmat(stream)
assert_equal(np.dtype(dts), vars['arr'].dtype)
def test_varmats_from_mat():
# Make a mat file with several variables, write it, read it back
names_vars = (('arr', mlarr(np.arange(10))),
('mystr', mlarr('a string')),
('mynum', mlarr(10)))
# Dict like thing to give variables in defined order
class C:
def items(self):
return names_vars
stream = BytesIO()
savemat(stream, C())
varmats = varmats_from_mat(stream)
assert_equal(len(varmats), 3)
for i in range(3):
name, var_stream = varmats[i]
exp_name, exp_res = names_vars[i]
assert_equal(name, exp_name)
res = loadmat(var_stream)
assert_array_equal(res[name], exp_res)
def test_one_by_zero():
# Test 1x0 chars get read correctly
func_eg = pjoin(test_data_path, 'one_by_zero_char.mat')
fp = open(func_eg, 'rb')
rdr = MatFile5Reader(fp)
d = rdr.get_variables()
fp.close()
assert_equal(d['var'].shape, (0,))
def test_load_mat4_le():
# We were getting byte order wrong when reading little-endian floa64 dense
# matrices on big-endian platforms
mat4_fname = pjoin(test_data_path, 'test_mat4_le_floats.mat')
vars = loadmat(mat4_fname)
assert_array_equal(vars['a'], [[0.1, 1.2]])
def test_unicode_mat4():
# Mat4 should save unicode as latin1
bio = BytesIO()
var = {'second_cat': 'Schrödinger'}
savemat(bio, var, format='4')
var_back = loadmat(bio)
assert_equal(var_back['second_cat'], var['second_cat'])
def test_logical_sparse():
# Test we can read logical sparse stored in mat file as bytes.
# See https://github.com/scipy/scipy/issues/3539.
# In some files saved by MATLAB, the sparse data elements (Real Part
# Subelement in MATLAB speak) are stored with apparent type double
# (miDOUBLE) but are in fact single bytes.
filename = pjoin(test_data_path,'logical_sparse.mat')
# Before fix, this would crash with:
# ValueError: indices and data should have the same size
d = loadmat(filename, struct_as_record=True)
log_sp = d['sp_log_5_4']
assert_(isinstance(log_sp, SP.csc_matrix))
assert_equal(log_sp.dtype.type, np.bool_)
assert_array_equal(log_sp.toarray(),
[[True, True, True, False],
[False, False, True, False],
[False, False, True, False],
[False, False, False, False],
[False, False, False, False]])
def test_empty_sparse():
# Can we read empty sparse matrices?
sio = BytesIO()
import scipy.sparse
empty_sparse = scipy.sparse.csr_matrix([[0,0],[0,0]])
savemat(sio, dict(x=empty_sparse))
sio.seek(0)
res = loadmat(sio)
assert_array_equal(res['x'].shape, empty_sparse.shape)
assert_array_equal(res['x'].toarray(), 0)
# Do empty sparse matrices get written with max nnz 1?
# See https://github.com/scipy/scipy/issues/4208
sio.seek(0)
reader = MatFile5Reader(sio)
reader.initialize_read()
reader.read_file_header()
hdr, _ = reader.read_var_header()
assert_equal(hdr.nzmax, 1)
def test_empty_mat_error():
# Test we get a specific warning for an empty mat file
sio = BytesIO()
assert_raises(MatReadError, loadmat, sio)
def test_miuint32_compromise():
# Reader should accept miUINT32 for miINT32, but check signs
# mat file with miUINT32 for miINT32, but OK values
filename = pjoin(test_data_path, 'miuint32_for_miint32.mat')
res = loadmat(filename)
assert_equal(res['an_array'], np.arange(10)[None, :])
# mat file with miUINT32 for miINT32, with negative value
filename = pjoin(test_data_path, 'bad_miuint32.mat')
with assert_raises(ValueError):
loadmat(filename)
def test_miutf8_for_miint8_compromise():
# Check reader accepts ascii as miUTF8 for array names
filename = pjoin(test_data_path, 'miutf8_array_name.mat')
res = loadmat(filename)
assert_equal(res['array_name'], [[1]])
# mat file with non-ascii utf8 name raises error
filename = pjoin(test_data_path, 'bad_miutf8_array_name.mat')
with assert_raises(ValueError):
loadmat(filename)
def test_bad_utf8():
# Check that reader reads bad UTF with 'replace' option
filename = pjoin(test_data_path,'broken_utf8.mat')
res = loadmat(filename)
assert_equal(res['bad_string'],
b'\x80 am broken'.decode('utf8', 'replace'))
def test_save_unicode_field(tmpdir):
filename = os.path.join(str(tmpdir), 'test.mat')
test_dict = {'a':{'b':1,'c':'test_str'}}
savemat(filename, test_dict)
def test_save_custom_array_type(tmpdir):
class CustomArray:
def __array__(self, dtype=None, copy=None):
return np.arange(6.0).reshape(2, 3)
a = CustomArray()
filename = os.path.join(str(tmpdir), 'test.mat')
savemat(filename, {'a': a})
out = loadmat(filename)
assert_array_equal(out['a'], np.array(a))
def test_filenotfound():
# Check the correct error is thrown
assert_raises(OSError, loadmat, "NotExistentFile00.mat")
assert_raises(OSError, loadmat, "NotExistentFile00")
def test_simplify_cells():
# Test output when simplify_cells=True
filename = pjoin(test_data_path, 'testsimplecell.mat')
res1 = loadmat(filename, simplify_cells=True)
res2 = loadmat(filename, simplify_cells=False)
assert_(isinstance(res1["s"], dict))
assert_(isinstance(res2["s"], np.ndarray))
assert_array_equal(res1["s"]["mycell"], np.array(["a", "b", "c"]))
@pytest.mark.parametrize('version, filt, regex', [
(0, '_4*_*', None),
(1, '_5*_*', None),
(1, '_6*_*', None),
(1, '_7*_*', '^((?!hdf5).)*$'), # not containing hdf5
(2, '_7*_*', '.*hdf5.*'),
(1, '8*_*', None),
])
def test_matfile_version(version, filt, regex):
use_filt = pjoin(test_data_path, 'test*%s.mat' % filt)
files = glob(use_filt)
if regex is not None:
files = [file for file in files if re.match(regex, file) is not None]
assert len(files) > 0, \
f"No files for version {version} using filter {filt}"
for file in files:
got_version = matfile_version(file)
assert got_version[0] == version
def test_opaque():
"""Test that we can read a MatlabOpaque object."""
data = loadmat(pjoin(test_data_path, 'parabola.mat'))
assert isinstance(data['parabola'], MatlabFunction)
assert isinstance(data['parabola'].item()[3].item()[3], MatlabOpaque)
def test_opaque_simplify():
"""Test that we can read a MatlabOpaque object when simplify_cells=True."""
data = loadmat(pjoin(test_data_path, 'parabola.mat'), simplify_cells=True)
assert isinstance(data['parabola'], MatlabFunction)
def test_deprecation():
"""Test that access to previous attributes still works."""
# This should be accessible immediately from scipy.io import
with assert_warns(DeprecationWarning):
scipy.io.matlab.mio5_params.MatlabOpaque
# These should be importable but warn as well
with assert_warns(DeprecationWarning):
from scipy.io.matlab.miobase import MatReadError # noqa: F401
def test_gh_17992(tmp_path):
rng = np.random.default_rng(12345)
outfile = tmp_path / "lists.mat"
array_one = rng.random((5,3))
array_two = rng.random((6,3))
list_of_arrays = [array_one, array_two]
# warning suppression only needed for NumPy < 1.24.0
with np.testing.suppress_warnings() as sup:
sup.filter(VisibleDeprecationWarning)
savemat(outfile,
{'data': list_of_arrays},
long_field_names=True,
do_compression=True)
# round trip check
new_dict = {}
loadmat(outfile,
new_dict)
assert_allclose(new_dict["data"][0][0], array_one)
assert_allclose(new_dict["data"][0][1], array_two)
def test_gh_19659(tmp_path):
d = {
"char_array": np.array([list("char"), list("char")], dtype="U1"),
"string_array": np.array(["string", "string"]),
}
outfile = tmp_path / "tmp.mat"
# should not error:
savemat(outfile, d, format="4")