ai-content-maker/.venv/Lib/site-packages/scipy/spatial/tests/test_qhull.py

1179 lines
43 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
import os
import copy
import numpy as np
from numpy.testing import (assert_equal, assert_almost_equal,
assert_, assert_allclose, assert_array_equal)
import pytest
from pytest import raises as assert_raises
import scipy.spatial._qhull as qhull
from scipy.spatial import cKDTree as KDTree
from scipy.spatial import Voronoi
import itertools
def sorted_tuple(x):
return tuple(sorted(x))
def assert_unordered_tuple_list_equal(a, b, tpl=tuple):
if isinstance(a, np.ndarray):
a = a.tolist()
if isinstance(b, np.ndarray):
b = b.tolist()
a = list(map(tpl, a))
a.sort()
b = list(map(tpl, b))
b.sort()
assert_equal(a, b)
np.random.seed(1234)
points = [(0,0), (0,1), (1,0), (1,1), (0.5, 0.5), (0.5, 1.5)]
pathological_data_1 = np.array([
[-3.14,-3.14], [-3.14,-2.36], [-3.14,-1.57], [-3.14,-0.79],
[-3.14,0.0], [-3.14,0.79], [-3.14,1.57], [-3.14,2.36],
[-3.14,3.14], [-2.36,-3.14], [-2.36,-2.36], [-2.36,-1.57],
[-2.36,-0.79], [-2.36,0.0], [-2.36,0.79], [-2.36,1.57],
[-2.36,2.36], [-2.36,3.14], [-1.57,-0.79], [-1.57,0.79],
[-1.57,-1.57], [-1.57,0.0], [-1.57,1.57], [-1.57,-3.14],
[-1.57,-2.36], [-1.57,2.36], [-1.57,3.14], [-0.79,-1.57],
[-0.79,1.57], [-0.79,-3.14], [-0.79,-2.36], [-0.79,-0.79],
[-0.79,0.0], [-0.79,0.79], [-0.79,2.36], [-0.79,3.14],
[0.0,-3.14], [0.0,-2.36], [0.0,-1.57], [0.0,-0.79], [0.0,0.0],
[0.0,0.79], [0.0,1.57], [0.0,2.36], [0.0,3.14], [0.79,-3.14],
[0.79,-2.36], [0.79,-0.79], [0.79,0.0], [0.79,0.79],
[0.79,2.36], [0.79,3.14], [0.79,-1.57], [0.79,1.57],
[1.57,-3.14], [1.57,-2.36], [1.57,2.36], [1.57,3.14],
[1.57,-1.57], [1.57,0.0], [1.57,1.57], [1.57,-0.79],
[1.57,0.79], [2.36,-3.14], [2.36,-2.36], [2.36,-1.57],
[2.36,-0.79], [2.36,0.0], [2.36,0.79], [2.36,1.57],
[2.36,2.36], [2.36,3.14], [3.14,-3.14], [3.14,-2.36],
[3.14,-1.57], [3.14,-0.79], [3.14,0.0], [3.14,0.79],
[3.14,1.57], [3.14,2.36], [3.14,3.14],
])
pathological_data_2 = np.array([
[-1, -1], [-1, 0], [-1, 1],
[0, -1], [0, 0], [0, 1],
[1, -1 - np.finfo(np.float64).eps], [1, 0], [1, 1],
])
bug_2850_chunks = [np.random.rand(10, 2),
np.array([[0,0], [0,1], [1,0], [1,1]]) # add corners
]
# same with some additional chunks
bug_2850_chunks_2 = (bug_2850_chunks +
[np.random.rand(10, 2),
0.25 + np.array([[0,0], [0,1], [1,0], [1,1]])])
DATASETS = {
'some-points': np.asarray(points),
'random-2d': np.random.rand(30, 2),
'random-3d': np.random.rand(30, 3),
'random-4d': np.random.rand(30, 4),
'random-5d': np.random.rand(30, 5),
'random-6d': np.random.rand(10, 6),
'random-7d': np.random.rand(10, 7),
'random-8d': np.random.rand(10, 8),
'pathological-1': pathological_data_1,
'pathological-2': pathological_data_2
}
INCREMENTAL_DATASETS = {
'bug-2850': (bug_2850_chunks, None),
'bug-2850-2': (bug_2850_chunks_2, None),
}
def _add_inc_data(name, chunksize):
"""
Generate incremental datasets from basic data sets
"""
points = DATASETS[name]
ndim = points.shape[1]
opts = None
nmin = ndim + 2
if name == 'some-points':
# since Qz is not allowed, use QJ
opts = 'QJ Pp'
elif name == 'pathological-1':
# include enough points so that we get different x-coordinates
nmin = 12
chunks = [points[:nmin]]
for j in range(nmin, len(points), chunksize):
chunks.append(points[j:j+chunksize])
new_name = "%s-chunk-%d" % (name, chunksize)
assert new_name not in INCREMENTAL_DATASETS
INCREMENTAL_DATASETS[new_name] = (chunks, opts)
for name in DATASETS:
for chunksize in 1, 4, 16:
_add_inc_data(name, chunksize)
class Test_Qhull:
def test_swapping(self):
# Check that Qhull state swapping works
x = qhull._Qhull(b'v',
np.array([[0,0],[0,1],[1,0],[1,1.],[0.5,0.5]]),
b'Qz')
xd = copy.deepcopy(x.get_voronoi_diagram())
y = qhull._Qhull(b'v',
np.array([[0,0],[0,1],[1,0],[1,2.]]),
b'Qz')
yd = copy.deepcopy(y.get_voronoi_diagram())
xd2 = copy.deepcopy(x.get_voronoi_diagram())
x.close()
yd2 = copy.deepcopy(y.get_voronoi_diagram())
y.close()
assert_raises(RuntimeError, x.get_voronoi_diagram)
assert_raises(RuntimeError, y.get_voronoi_diagram)
assert_allclose(xd[0], xd2[0])
assert_unordered_tuple_list_equal(xd[1], xd2[1], tpl=sorted_tuple)
assert_unordered_tuple_list_equal(xd[2], xd2[2], tpl=sorted_tuple)
assert_unordered_tuple_list_equal(xd[3], xd2[3], tpl=sorted_tuple)
assert_array_equal(xd[4], xd2[4])
assert_allclose(yd[0], yd2[0])
assert_unordered_tuple_list_equal(yd[1], yd2[1], tpl=sorted_tuple)
assert_unordered_tuple_list_equal(yd[2], yd2[2], tpl=sorted_tuple)
assert_unordered_tuple_list_equal(yd[3], yd2[3], tpl=sorted_tuple)
assert_array_equal(yd[4], yd2[4])
x.close()
assert_raises(RuntimeError, x.get_voronoi_diagram)
y.close()
assert_raises(RuntimeError, y.get_voronoi_diagram)
def test_issue_8051(self):
points = np.array(
[[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2],[2, 0], [2, 1], [2, 2]]
)
Voronoi(points)
class TestUtilities:
"""
Check that utility functions work.
"""
def test_find_simplex(self):
# Simple check that simplex finding works
points = np.array([(0,0), (0,1), (1,1), (1,0)], dtype=np.float64)
tri = qhull.Delaunay(points)
# +---+
# |\ 0|
# | \ |
# |1 \|
# +---+
assert_equal(tri.simplices, [[1, 3, 2], [3, 1, 0]])
for p in [(0.25, 0.25, 1),
(0.75, 0.75, 0),
(0.3, 0.2, 1)]:
i = tri.find_simplex(p[:2])
assert_equal(i, p[2], err_msg=f'{p!r}')
j = qhull.tsearch(tri, p[:2])
assert_equal(i, j)
def test_plane_distance(self):
# Compare plane distance from hyperplane equations obtained from Qhull
# to manually computed plane equations
x = np.array([(0,0), (1, 1), (1, 0), (0.99189033, 0.37674127),
(0.99440079, 0.45182168)], dtype=np.float64)
p = np.array([0.99966555, 0.15685619], dtype=np.float64)
tri = qhull.Delaunay(x)
z = tri.lift_points(x)
pz = tri.lift_points(p)
dist = tri.plane_distance(p)
for j, v in enumerate(tri.simplices):
x1 = z[v[0]]
x2 = z[v[1]]
x3 = z[v[2]]
n = np.cross(x1 - x3, x2 - x3)
n /= np.sqrt(np.dot(n, n))
n *= -np.sign(n[2])
d = np.dot(n, pz - x3)
assert_almost_equal(dist[j], d)
def test_convex_hull(self):
# Simple check that the convex hull seems to works
points = np.array([(0,0), (0,1), (1,1), (1,0)], dtype=np.float64)
tri = qhull.Delaunay(points)
# +---+
# |\ 0|
# | \ |
# |1 \|
# +---+
assert_equal(tri.convex_hull, [[3, 2], [1, 2], [1, 0], [3, 0]])
def test_volume_area(self):
#Basic check that we get back the correct volume and area for a cube
points = np.array([(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0),
(0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 1)])
hull = qhull.ConvexHull(points)
assert_allclose(hull.volume, 1., rtol=1e-14,
err_msg="Volume of cube is incorrect")
assert_allclose(hull.area, 6., rtol=1e-14,
err_msg="Area of cube is incorrect")
def test_random_volume_area(self):
#Test that the results for a random 10-point convex are
#coherent with the output of qconvex Qt s FA
points = np.array([(0.362568364506, 0.472712355305, 0.347003084477),
(0.733731893414, 0.634480295684, 0.950513180209),
(0.511239955611, 0.876839441267, 0.418047827863),
(0.0765906233393, 0.527373281342, 0.6509863541),
(0.146694972056, 0.596725793348, 0.894860986685),
(0.513808585741, 0.069576205858, 0.530890338876),
(0.512343805118, 0.663537132612, 0.037689295973),
(0.47282965018, 0.462176697655, 0.14061843691),
(0.240584597123, 0.778660020591, 0.722913476339),
(0.951271745935, 0.967000673944, 0.890661319684)])
hull = qhull.ConvexHull(points)
assert_allclose(hull.volume, 0.14562013, rtol=1e-07,
err_msg="Volume of random polyhedron is incorrect")
assert_allclose(hull.area, 1.6670425, rtol=1e-07,
err_msg="Area of random polyhedron is incorrect")
def test_incremental_volume_area_random_input(self):
"""Test that incremental mode gives the same volume/area as
non-incremental mode and incremental mode with restart"""
nr_points = 20
dim = 3
points = np.random.random((nr_points, dim))
inc_hull = qhull.ConvexHull(points[:dim+1, :], incremental=True)
inc_restart_hull = qhull.ConvexHull(points[:dim+1, :], incremental=True)
for i in range(dim+1, nr_points):
hull = qhull.ConvexHull(points[:i+1, :])
inc_hull.add_points(points[i:i+1, :])
inc_restart_hull.add_points(points[i:i+1, :], restart=True)
assert_allclose(hull.volume, inc_hull.volume, rtol=1e-7)
assert_allclose(hull.volume, inc_restart_hull.volume, rtol=1e-7)
assert_allclose(hull.area, inc_hull.area, rtol=1e-7)
assert_allclose(hull.area, inc_restart_hull.area, rtol=1e-7)
def _check_barycentric_transforms(self, tri, err_msg="",
unit_cube=False,
unit_cube_tol=0):
"""Check that a triangulation has reasonable barycentric transforms"""
vertices = tri.points[tri.simplices]
sc = 1/(tri.ndim + 1.0)
centroids = vertices.sum(axis=1) * sc
# Either: (i) the simplex has a `nan` barycentric transform,
# or, (ii) the centroid is in the simplex
def barycentric_transform(tr, x):
r = tr[:,-1,:]
Tinv = tr[:,:-1,:]
return np.einsum('ijk,ik->ij', Tinv, x - r)
eps = np.finfo(float).eps
c = barycentric_transform(tri.transform, centroids)
with np.errstate(invalid="ignore"):
ok = np.isnan(c).all(axis=1) | (abs(c - sc)/sc < 0.1).all(axis=1)
assert_(ok.all(), f"{err_msg} {np.nonzero(~ok)}")
# Invalid simplices must be (nearly) zero volume
q = vertices[:,:-1,:] - vertices[:,-1,None,:]
volume = np.array([np.linalg.det(q[k,:,:])
for k in range(tri.nsimplex)])
ok = np.isfinite(tri.transform[:,0,0]) | (volume < np.sqrt(eps))
assert_(ok.all(), f"{err_msg} {np.nonzero(~ok)}")
# Also, find_simplex for the centroid should end up in some
# simplex for the non-degenerate cases
j = tri.find_simplex(centroids)
ok = (j != -1) | np.isnan(tri.transform[:,0,0])
assert_(ok.all(), f"{err_msg} {np.nonzero(~ok)}")
if unit_cube:
# If in unit cube, no interior point should be marked out of hull
at_boundary = (centroids <= unit_cube_tol).any(axis=1)
at_boundary |= (centroids >= 1 - unit_cube_tol).any(axis=1)
ok = (j != -1) | at_boundary
assert_(ok.all(), f"{err_msg} {np.nonzero(~ok)}")
def test_degenerate_barycentric_transforms(self):
# The triangulation should not produce invalid barycentric
# transforms that stump the simplex finding
data = np.load(os.path.join(os.path.dirname(__file__), 'data',
'degenerate_pointset.npz'))
points = data['c']
data.close()
tri = qhull.Delaunay(points)
# Check that there are not too many invalid simplices
bad_count = np.isnan(tri.transform[:,0,0]).sum()
assert_(bad_count < 23, bad_count)
# Check the transforms
self._check_barycentric_transforms(tri)
@pytest.mark.slow
def test_more_barycentric_transforms(self):
# Triangulate some "nasty" grids
eps = np.finfo(float).eps
npoints = {2: 70, 3: 11, 4: 5, 5: 3}
for ndim in range(2, 6):
# Generate an uniform grid in n-d unit cube
x = np.linspace(0, 1, npoints[ndim])
grid = np.c_[
list(map(np.ravel, np.broadcast_arrays(*np.ix_(*([x]*ndim)))))
].T
err_msg = "ndim=%d" % ndim
# Check using regular grid
tri = qhull.Delaunay(grid)
self._check_barycentric_transforms(tri, err_msg=err_msg,
unit_cube=True)
# Check with eps-perturbations
np.random.seed(1234)
m = (np.random.rand(grid.shape[0]) < 0.2)
grid[m,:] += 2*eps*(np.random.rand(*grid[m,:].shape) - 0.5)
tri = qhull.Delaunay(grid)
self._check_barycentric_transforms(tri, err_msg=err_msg,
unit_cube=True,
unit_cube_tol=2*eps)
# Check with duplicated data
tri = qhull.Delaunay(np.r_[grid, grid])
self._check_barycentric_transforms(tri, err_msg=err_msg,
unit_cube=True,
unit_cube_tol=2*eps)
class TestVertexNeighborVertices:
def _check(self, tri):
expected = [set() for j in range(tri.points.shape[0])]
for s in tri.simplices:
for a in s:
for b in s:
if a != b:
expected[a].add(b)
indptr, indices = tri.vertex_neighbor_vertices
got = [set(map(int, indices[indptr[j]:indptr[j+1]]))
for j in range(tri.points.shape[0])]
assert_equal(got, expected, err_msg=f"{got!r} != {expected!r}")
def test_triangle(self):
points = np.array([(0,0), (0,1), (1,0)], dtype=np.float64)
tri = qhull.Delaunay(points)
self._check(tri)
def test_rectangle(self):
points = np.array([(0,0), (0,1), (1,1), (1,0)], dtype=np.float64)
tri = qhull.Delaunay(points)
self._check(tri)
def test_complicated(self):
points = np.array([(0,0), (0,1), (1,1), (1,0),
(0.5, 0.5), (0.9, 0.5)], dtype=np.float64)
tri = qhull.Delaunay(points)
self._check(tri)
class TestDelaunay:
"""
Check that triangulation works.
"""
def test_masked_array_fails(self):
masked_array = np.ma.masked_all(1)
assert_raises(ValueError, qhull.Delaunay, masked_array)
def test_array_with_nans_fails(self):
points_with_nan = np.array([(0,0), (0,1), (1,1), (1,np.nan)], dtype=np.float64)
assert_raises(ValueError, qhull.Delaunay, points_with_nan)
def test_nd_simplex(self):
# simple smoke test: triangulate a n-dimensional simplex
for nd in range(2, 8):
points = np.zeros((nd+1, nd))
for j in range(nd):
points[j,j] = 1.0
points[-1,:] = 1.0
tri = qhull.Delaunay(points)
tri.simplices.sort()
assert_equal(tri.simplices, np.arange(nd+1, dtype=int)[None, :])
assert_equal(tri.neighbors, -1 + np.zeros((nd+1), dtype=int)[None,:])
def test_2d_square(self):
# simple smoke test: 2d square
points = np.array([(0,0), (0,1), (1,1), (1,0)], dtype=np.float64)
tri = qhull.Delaunay(points)
assert_equal(tri.simplices, [[1, 3, 2], [3, 1, 0]])
assert_equal(tri.neighbors, [[-1, -1, 1], [-1, -1, 0]])
def test_duplicate_points(self):
x = np.array([0, 1, 0, 1], dtype=np.float64)
y = np.array([0, 0, 1, 1], dtype=np.float64)
xp = np.r_[x, x]
yp = np.r_[y, y]
# shouldn't fail on duplicate points
qhull.Delaunay(np.c_[x, y])
qhull.Delaunay(np.c_[xp, yp])
def test_pathological(self):
# both should succeed
points = DATASETS['pathological-1']
tri = qhull.Delaunay(points)
assert_equal(tri.points[tri.simplices].max(), points.max())
assert_equal(tri.points[tri.simplices].min(), points.min())
points = DATASETS['pathological-2']
tri = qhull.Delaunay(points)
assert_equal(tri.points[tri.simplices].max(), points.max())
assert_equal(tri.points[tri.simplices].min(), points.min())
def test_joggle(self):
# Check that the option QJ indeed guarantees that all input points
# occur as vertices of the triangulation
points = np.random.rand(10, 2)
points = np.r_[points, points] # duplicate input data
tri = qhull.Delaunay(points, qhull_options="QJ Qbb Pp")
assert_array_equal(np.unique(tri.simplices.ravel()),
np.arange(len(points)))
def test_coplanar(self):
# Check that the coplanar point output option indeed works
points = np.random.rand(10, 2)
points = np.r_[points, points] # duplicate input data
tri = qhull.Delaunay(points)
assert_(len(np.unique(tri.simplices.ravel())) == len(points)//2)
assert_(len(tri.coplanar) == len(points)//2)
assert_(len(np.unique(tri.coplanar[:,2])) == len(points)//2)
assert_(np.all(tri.vertex_to_simplex >= 0))
def test_furthest_site(self):
points = [(0, 0), (0, 1), (1, 0), (0.5, 0.5), (1.1, 1.1)]
tri = qhull.Delaunay(points, furthest_site=True)
expected = np.array([(1, 4, 0), (4, 2, 0)]) # from Qhull
assert_array_equal(tri.simplices, expected)
@pytest.mark.parametrize("name", sorted(INCREMENTAL_DATASETS))
def test_incremental(self, name):
# Test incremental construction of the triangulation
chunks, opts = INCREMENTAL_DATASETS[name]
points = np.concatenate(chunks, axis=0)
obj = qhull.Delaunay(chunks[0], incremental=True,
qhull_options=opts)
for chunk in chunks[1:]:
obj.add_points(chunk)
obj2 = qhull.Delaunay(points)
obj3 = qhull.Delaunay(chunks[0], incremental=True,
qhull_options=opts)
if len(chunks) > 1:
obj3.add_points(np.concatenate(chunks[1:], axis=0),
restart=True)
# Check that the incremental mode agrees with upfront mode
if name.startswith('pathological'):
# XXX: These produce valid but different triangulations.
# They look OK when plotted, but how to check them?
assert_array_equal(np.unique(obj.simplices.ravel()),
np.arange(points.shape[0]))
assert_array_equal(np.unique(obj2.simplices.ravel()),
np.arange(points.shape[0]))
else:
assert_unordered_tuple_list_equal(obj.simplices, obj2.simplices,
tpl=sorted_tuple)
assert_unordered_tuple_list_equal(obj2.simplices, obj3.simplices,
tpl=sorted_tuple)
def assert_hulls_equal(points, facets_1, facets_2):
# Check that two convex hulls constructed from the same point set
# are equal
facets_1 = set(map(sorted_tuple, facets_1))
facets_2 = set(map(sorted_tuple, facets_2))
if facets_1 != facets_2 and points.shape[1] == 2:
# The direct check fails for the pathological cases
# --- then the convex hull from Delaunay differs (due
# to rounding error etc.) from the hull computed
# otherwise, by the question whether (tricoplanar)
# points that lie almost exactly on the hull are
# included as vertices of the hull or not.
#
# So we check the result, and accept it if the Delaunay
# hull line segments are a subset of the usual hull.
eps = 1000 * np.finfo(float).eps
for a, b in facets_1:
for ap, bp in facets_2:
t = points[bp] - points[ap]
t /= np.linalg.norm(t) # tangent
n = np.array([-t[1], t[0]]) # normal
# check that the two line segments are parallel
# to the same line
c1 = np.dot(n, points[b] - points[ap])
c2 = np.dot(n, points[a] - points[ap])
if not np.allclose(np.dot(c1, n), 0):
continue
if not np.allclose(np.dot(c2, n), 0):
continue
# Check that the segment (a, b) is contained in (ap, bp)
c1 = np.dot(t, points[a] - points[ap])
c2 = np.dot(t, points[b] - points[ap])
c3 = np.dot(t, points[bp] - points[ap])
if c1 < -eps or c1 > c3 + eps:
continue
if c2 < -eps or c2 > c3 + eps:
continue
# OK:
break
else:
raise AssertionError("comparison fails")
# it was OK
return
assert_equal(facets_1, facets_2)
class TestConvexHull:
def test_masked_array_fails(self):
masked_array = np.ma.masked_all(1)
assert_raises(ValueError, qhull.ConvexHull, masked_array)
def test_array_with_nans_fails(self):
points_with_nan = np.array([(0,0), (1,1), (2,np.nan)], dtype=np.float64)
assert_raises(ValueError, qhull.ConvexHull, points_with_nan)
@pytest.mark.parametrize("name", sorted(DATASETS))
def test_hull_consistency_tri(self, name):
# Check that a convex hull returned by qhull in ndim
# and the hull constructed from ndim delaunay agree
points = DATASETS[name]
tri = qhull.Delaunay(points)
hull = qhull.ConvexHull(points)
assert_hulls_equal(points, tri.convex_hull, hull.simplices)
# Check that the hull extremes are as expected
if points.shape[1] == 2:
assert_equal(np.unique(hull.simplices), np.sort(hull.vertices))
else:
assert_equal(np.unique(hull.simplices), hull.vertices)
@pytest.mark.parametrize("name", sorted(INCREMENTAL_DATASETS))
def test_incremental(self, name):
# Test incremental construction of the convex hull
chunks, _ = INCREMENTAL_DATASETS[name]
points = np.concatenate(chunks, axis=0)
obj = qhull.ConvexHull(chunks[0], incremental=True)
for chunk in chunks[1:]:
obj.add_points(chunk)
obj2 = qhull.ConvexHull(points)
obj3 = qhull.ConvexHull(chunks[0], incremental=True)
if len(chunks) > 1:
obj3.add_points(np.concatenate(chunks[1:], axis=0),
restart=True)
# Check that the incremental mode agrees with upfront mode
assert_hulls_equal(points, obj.simplices, obj2.simplices)
assert_hulls_equal(points, obj.simplices, obj3.simplices)
def test_vertices_2d(self):
# The vertices should be in counterclockwise order in 2-D
np.random.seed(1234)
points = np.random.rand(30, 2)
hull = qhull.ConvexHull(points)
assert_equal(np.unique(hull.simplices), np.sort(hull.vertices))
# Check counterclockwiseness
x, y = hull.points[hull.vertices].T
angle = np.arctan2(y - y.mean(), x - x.mean())
assert_(np.all(np.diff(np.unwrap(angle)) > 0))
def test_volume_area(self):
# Basic check that we get back the correct volume and area for a cube
points = np.array([(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0),
(0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 1)])
tri = qhull.ConvexHull(points)
assert_allclose(tri.volume, 1., rtol=1e-14)
assert_allclose(tri.area, 6., rtol=1e-14)
@pytest.mark.parametrize("incremental", [False, True])
def test_good2d(self, incremental):
# Make sure the QGn option gives the correct value of "good".
points = np.array([[0.2, 0.2],
[0.2, 0.4],
[0.4, 0.4],
[0.4, 0.2],
[0.3, 0.6]])
hull = qhull.ConvexHull(points=points,
incremental=incremental,
qhull_options='QG4')
expected = np.array([False, True, False, False], dtype=bool)
actual = hull.good
assert_equal(actual, expected)
@pytest.mark.parametrize("visibility", [
"QG4", # visible=True
"QG-4", # visible=False
])
@pytest.mark.parametrize("new_gen, expected", [
# add generator that places QG4 inside hull
# so all facets are invisible
(np.array([[0.3, 0.7]]),
np.array([False, False, False, False, False], dtype=bool)),
# adding a generator on the opposite side of the square
# should preserve the single visible facet & add one invisible
# facet
(np.array([[0.3, -0.7]]),
np.array([False, True, False, False, False], dtype=bool)),
# split the visible facet on top of the square into two
# visible facets, with visibility at the end of the array
# because add_points concatenates
(np.array([[0.3, 0.41]]),
np.array([False, False, False, True, True], dtype=bool)),
# with our current Qhull options, coplanarity will not count
# for visibility; this case shifts one visible & one invisible
# facet & adds a coplanar facet
# simplex at index position 2 is the shifted visible facet
# the final simplex is the coplanar facet
(np.array([[0.5, 0.6], [0.6, 0.6]]),
np.array([False, False, True, False, False], dtype=bool)),
# place the new generator such that it envelops the query
# point within the convex hull, but only just barely within
# the double precision limit
# NOTE: testing exact degeneracy is less predictable than this
# scenario, perhaps because of the default Qt option we have
# enabled for Qhull to handle precision matters
(np.array([[0.3, 0.6 + 1e-16]]),
np.array([False, False, False, False, False], dtype=bool)),
])
def test_good2d_incremental_changes(self, new_gen, expected,
visibility):
# use the usual square convex hull
# generators from test_good2d
points = np.array([[0.2, 0.2],
[0.2, 0.4],
[0.4, 0.4],
[0.4, 0.2],
[0.3, 0.6]])
hull = qhull.ConvexHull(points=points,
incremental=True,
qhull_options=visibility)
hull.add_points(new_gen)
actual = hull.good
if '-' in visibility:
expected = np.invert(expected)
assert_equal(actual, expected)
@pytest.mark.parametrize("incremental", [False, True])
def test_good2d_no_option(self, incremental):
# handle case where good attribute doesn't exist
# because Qgn or Qg-n wasn't specified
points = np.array([[0.2, 0.2],
[0.2, 0.4],
[0.4, 0.4],
[0.4, 0.2],
[0.3, 0.6]])
hull = qhull.ConvexHull(points=points,
incremental=incremental)
actual = hull.good
assert actual is None
# preserve None after incremental addition
if incremental:
hull.add_points(np.zeros((1, 2)))
actual = hull.good
assert actual is None
@pytest.mark.parametrize("incremental", [False, True])
def test_good2d_inside(self, incremental):
# Make sure the QGn option gives the correct value of "good".
# When point n is inside the convex hull of the rest, good is
# all False.
points = np.array([[0.2, 0.2],
[0.2, 0.4],
[0.4, 0.4],
[0.4, 0.2],
[0.3, 0.3]])
hull = qhull.ConvexHull(points=points,
incremental=incremental,
qhull_options='QG4')
expected = np.array([False, False, False, False], dtype=bool)
actual = hull.good
assert_equal(actual, expected)
@pytest.mark.parametrize("incremental", [False, True])
def test_good3d(self, incremental):
# Make sure the QGn option gives the correct value of "good"
# for a 3d figure
points = np.array([[0.0, 0.0, 0.0],
[0.90029516, -0.39187448, 0.18948093],
[0.48676420, -0.72627633, 0.48536925],
[0.57651530, -0.81179274, -0.09285832],
[0.67846893, -0.71119562, 0.18406710]])
hull = qhull.ConvexHull(points=points,
incremental=incremental,
qhull_options='QG0')
expected = np.array([True, False, False, False], dtype=bool)
assert_equal(hull.good, expected)
class TestVoronoi:
@pytest.mark.parametrize("qhull_opts, extra_pts", [
# option Qz (default for SciPy) will add
# an extra point at infinity
("Qbb Qc Qz", 1),
("Qbb Qc", 0),
])
@pytest.mark.parametrize("n_pts", [50, 100])
@pytest.mark.parametrize("ndim", [2, 3])
def test_point_region_structure(self,
qhull_opts,
n_pts,
extra_pts,
ndim):
# see gh-16773
rng = np.random.default_rng(7790)
points = rng.random((n_pts, ndim))
vor = Voronoi(points, qhull_options=qhull_opts)
pt_region = vor.point_region
assert pt_region.max() == n_pts - 1 + extra_pts
assert pt_region.size == len(vor.regions) - extra_pts
assert len(vor.regions) == n_pts + extra_pts
assert vor.points.shape[0] == n_pts
# if there is an empty sublist in the Voronoi
# regions data structure, it should never be
# indexed because it corresponds to an internally
# added point at infinity and is not a member of the
# generators (input points)
if extra_pts:
sublens = [len(x) for x in vor.regions]
# only one point at infinity (empty region)
# is allowed
assert sublens.count(0) == 1
assert sublens.index(0) not in pt_region
def test_masked_array_fails(self):
masked_array = np.ma.masked_all(1)
assert_raises(ValueError, qhull.Voronoi, masked_array)
def test_simple(self):
# Simple case with known Voronoi diagram
points = [(0, 0), (0, 1), (0, 2),
(1, 0), (1, 1), (1, 2),
(2, 0), (2, 1), (2, 2)]
# qhull v o Fv Qbb Qc Qz < dat
output = """
2
5 10 1
-10.101 -10.101
0.5 0.5
0.5 1.5
1.5 0.5
1.5 1.5
2 0 1
3 2 0 1
2 0 2
3 3 0 1
4 1 2 4 3
3 4 0 2
2 0 3
3 4 0 3
2 0 4
0
12
4 0 3 0 1
4 0 1 0 1
4 1 4 1 2
4 1 2 0 2
4 2 5 0 2
4 3 4 1 3
4 3 6 0 3
4 4 5 2 4
4 4 7 3 4
4 5 8 0 4
4 6 7 0 3
4 7 8 0 4
"""
self._compare_qvoronoi(points, output)
def _compare_qvoronoi(self, points, output, **kw):
"""Compare to output from 'qvoronoi o Fv < data' to Voronoi()"""
# Parse output
output = [list(map(float, x.split())) for x in output.strip().splitlines()]
nvertex = int(output[1][0])
vertices = list(map(tuple, output[3:2+nvertex])) # exclude inf
nregion = int(output[1][1])
regions = [[int(y)-1 for y in x[1:]]
for x in output[2+nvertex:2+nvertex+nregion]]
ridge_points = [[int(y) for y in x[1:3]]
for x in output[3+nvertex+nregion:]]
ridge_vertices = [[int(y)-1 for y in x[3:]]
for x in output[3+nvertex+nregion:]]
# Compare results
vor = qhull.Voronoi(points, **kw)
def sorttuple(x):
return tuple(sorted(x))
assert_allclose(vor.vertices, vertices)
assert_equal(set(map(tuple, vor.regions)),
set(map(tuple, regions)))
p1 = list(zip(list(map(sorttuple, ridge_points)),
list(map(sorttuple, ridge_vertices))))
p2 = list(zip(list(map(sorttuple, vor.ridge_points.tolist())),
list(map(sorttuple, vor.ridge_vertices))))
p1.sort()
p2.sort()
assert_equal(p1, p2)
@pytest.mark.parametrize("name", sorted(DATASETS))
def test_ridges(self, name):
# Check that the ridges computed by Voronoi indeed separate
# the regions of nearest neighborhood, by comparing the result
# to KDTree.
points = DATASETS[name]
tree = KDTree(points)
vor = qhull.Voronoi(points)
for p, v in vor.ridge_dict.items():
# consider only finite ridges
if not np.all(np.asarray(v) >= 0):
continue
ridge_midpoint = vor.vertices[v].mean(axis=0)
d = 1e-6 * (points[p[0]] - ridge_midpoint)
dist, k = tree.query(ridge_midpoint + d, k=1)
assert_equal(k, p[0])
dist, k = tree.query(ridge_midpoint - d, k=1)
assert_equal(k, p[1])
def test_furthest_site(self):
points = [(0, 0), (0, 1), (1, 0), (0.5, 0.5), (1.1, 1.1)]
# qhull v o Fv Qbb Qc Qu < dat
output = """
2
3 5 1
-10.101 -10.101
0.6000000000000001 0.5
0.5 0.6000000000000001
3 0 2 1
2 0 1
2 0 2
0
3 0 2 1
5
4 0 2 0 2
4 0 4 1 2
4 0 1 0 1
4 1 4 0 1
4 2 4 0 2
"""
self._compare_qvoronoi(points, output, furthest_site=True)
def test_furthest_site_flag(self):
points = [(0, 0), (0, 1), (1, 0), (0.5, 0.5), (1.1, 1.1)]
vor = Voronoi(points)
assert_equal(vor.furthest_site,False)
vor = Voronoi(points,furthest_site=True)
assert_equal(vor.furthest_site,True)
@pytest.mark.parametrize("name", sorted(INCREMENTAL_DATASETS))
def test_incremental(self, name):
# Test incremental construction of the triangulation
if INCREMENTAL_DATASETS[name][0][0].shape[1] > 3:
# too slow (testing of the result --- qhull is still fast)
return
chunks, opts = INCREMENTAL_DATASETS[name]
points = np.concatenate(chunks, axis=0)
obj = qhull.Voronoi(chunks[0], incremental=True,
qhull_options=opts)
for chunk in chunks[1:]:
obj.add_points(chunk)
obj2 = qhull.Voronoi(points)
obj3 = qhull.Voronoi(chunks[0], incremental=True,
qhull_options=opts)
if len(chunks) > 1:
obj3.add_points(np.concatenate(chunks[1:], axis=0),
restart=True)
# -- Check that the incremental mode agrees with upfront mode
assert_equal(len(obj.point_region), len(obj2.point_region))
assert_equal(len(obj.point_region), len(obj3.point_region))
# The vertices may be in different order or duplicated in
# the incremental map
for objx in obj, obj3:
vertex_map = {-1: -1}
for i, v in enumerate(objx.vertices):
for j, v2 in enumerate(obj2.vertices):
if np.allclose(v, v2):
vertex_map[i] = j
def remap(x):
if hasattr(x, '__len__'):
return tuple({remap(y) for y in x})
try:
return vertex_map[x]
except KeyError as e:
message = (f"incremental result has spurious vertex "
f"at {objx.vertices[x]!r}")
raise AssertionError(message) from e
def simplified(x):
items = set(map(sorted_tuple, x))
if () in items:
items.remove(())
items = [x for x in items if len(x) > 1]
items.sort()
return items
assert_equal(
simplified(remap(objx.regions)),
simplified(obj2.regions)
)
assert_equal(
simplified(remap(objx.ridge_vertices)),
simplified(obj2.ridge_vertices)
)
# XXX: compare ridge_points --- not clear exactly how to do this
class Test_HalfspaceIntersection:
def assert_unordered_allclose(self, arr1, arr2, rtol=1e-7):
"""Check that every line in arr1 is only once in arr2"""
assert_equal(arr1.shape, arr2.shape)
truths = np.zeros((arr1.shape[0],), dtype=bool)
for l1 in arr1:
indexes = np.nonzero((abs(arr2 - l1) < rtol).all(axis=1))[0]
assert_equal(indexes.shape, (1,))
truths[indexes[0]] = True
assert_(truths.all())
@pytest.mark.parametrize("dt", [np.float64, int])
def test_cube_halfspace_intersection(self, dt):
halfspaces = np.array([[-1, 0, 0],
[0, -1, 0],
[1, 0, -2],
[0, 1, -2]], dtype=dt)
feasible_point = np.array([1, 1], dtype=dt)
points = np.array([[0.0, 0.0], [2.0, 0.0], [0.0, 2.0], [2.0, 2.0]])
hull = qhull.HalfspaceIntersection(halfspaces, feasible_point)
assert_allclose(hull.intersections, points)
def test_self_dual_polytope_intersection(self):
fname = os.path.join(os.path.dirname(__file__), 'data',
'selfdual-4d-polytope.txt')
ineqs = np.genfromtxt(fname)
halfspaces = -np.hstack((ineqs[:, 1:], ineqs[:, :1]))
feas_point = np.array([0., 0., 0., 0.])
hs = qhull.HalfspaceIntersection(halfspaces, feas_point)
assert_equal(hs.intersections.shape, (24, 4))
assert_almost_equal(hs.dual_volume, 32.0)
assert_equal(len(hs.dual_facets), 24)
for facet in hs.dual_facets:
assert_equal(len(facet), 6)
dists = halfspaces[:, -1] + halfspaces[:, :-1].dot(feas_point)
self.assert_unordered_allclose((halfspaces[:, :-1].T/dists).T, hs.dual_points)
points = itertools.permutations([0., 0., 0.5, -0.5])
for point in points:
assert_equal(np.sum((hs.intersections == point).all(axis=1)), 1)
def test_wrong_feasible_point(self):
halfspaces = np.array([[-1.0, 0.0, 0.0],
[0.0, -1.0, 0.0],
[1.0, 0.0, -1.0],
[0.0, 1.0, -1.0]])
feasible_point = np.array([0.5, 0.5, 0.5])
#Feasible point is (ndim,) instead of (ndim-1,)
assert_raises(ValueError,
qhull.HalfspaceIntersection, halfspaces, feasible_point)
feasible_point = np.array([[0.5], [0.5]])
#Feasible point is (ndim-1, 1) instead of (ndim-1,)
assert_raises(ValueError,
qhull.HalfspaceIntersection, halfspaces, feasible_point)
feasible_point = np.array([[0.5, 0.5]])
#Feasible point is (1, ndim-1) instead of (ndim-1,)
assert_raises(ValueError,
qhull.HalfspaceIntersection, halfspaces, feasible_point)
feasible_point = np.array([-0.5, -0.5])
#Feasible point is outside feasible region
assert_raises(qhull.QhullError,
qhull.HalfspaceIntersection, halfspaces, feasible_point)
def test_incremental(self):
#Cube
halfspaces = np.array([[0., 0., -1., -0.5],
[0., -1., 0., -0.5],
[-1., 0., 0., -0.5],
[1., 0., 0., -0.5],
[0., 1., 0., -0.5],
[0., 0., 1., -0.5]])
#Cut each summit
extra_normals = np.array([[1., 1., 1.],
[1., 1., -1.],
[1., -1., 1.],
[1, -1., -1.]])
offsets = np.array([[-1.]]*8)
extra_halfspaces = np.hstack((np.vstack((extra_normals, -extra_normals)),
offsets))
feas_point = np.array([0., 0., 0.])
inc_hs = qhull.HalfspaceIntersection(halfspaces, feas_point, incremental=True)
inc_res_hs = qhull.HalfspaceIntersection(halfspaces, feas_point,
incremental=True)
for i, ehs in enumerate(extra_halfspaces):
inc_hs.add_halfspaces(ehs[np.newaxis, :])
inc_res_hs.add_halfspaces(ehs[np.newaxis, :], restart=True)
total = np.vstack((halfspaces, extra_halfspaces[:i+1, :]))
hs = qhull.HalfspaceIntersection(total, feas_point)
assert_allclose(inc_hs.halfspaces, inc_res_hs.halfspaces)
assert_allclose(inc_hs.halfspaces, hs.halfspaces)
#Direct computation and restart should have points in same order
assert_allclose(hs.intersections, inc_res_hs.intersections)
#Incremental will have points in different order than direct computation
self.assert_unordered_allclose(inc_hs.intersections, hs.intersections)
inc_hs.close()
def test_cube(self):
# Halfspaces of the cube:
halfspaces = np.array([[-1., 0., 0., 0.], # x >= 0
[1., 0., 0., -1.], # x <= 1
[0., -1., 0., 0.], # y >= 0
[0., 1., 0., -1.], # y <= 1
[0., 0., -1., 0.], # z >= 0
[0., 0., 1., -1.]]) # z <= 1
point = np.array([0.5, 0.5, 0.5])
hs = qhull.HalfspaceIntersection(halfspaces, point)
# qhalf H0.5,0.5,0.5 o < input.txt
qhalf_points = np.array([
[-2, 0, 0],
[2, 0, 0],
[0, -2, 0],
[0, 2, 0],
[0, 0, -2],
[0, 0, 2]])
qhalf_facets = [
[2, 4, 0],
[4, 2, 1],
[5, 2, 0],
[2, 5, 1],
[3, 4, 1],
[4, 3, 0],
[5, 3, 1],
[3, 5, 0]]
assert len(qhalf_facets) == len(hs.dual_facets)
for a, b in zip(qhalf_facets, hs.dual_facets):
assert set(a) == set(b) # facet orientation can differ
assert_allclose(hs.dual_points, qhalf_points)