2613 lines
91 KiB
Python
2613 lines
91 KiB
Python
|
"""
|
||
|
Ridge regression
|
||
|
"""
|
||
|
|
||
|
# Author: Mathieu Blondel <mathieu@mblondel.org>
|
||
|
# Reuben Fletcher-Costin <reuben.fletchercostin@gmail.com>
|
||
|
# Fabian Pedregosa <fabian@fseoane.net>
|
||
|
# Michael Eickenberg <michael.eickenberg@nsup.org>
|
||
|
# License: BSD 3 clause
|
||
|
|
||
|
|
||
|
import numbers
|
||
|
import warnings
|
||
|
from abc import ABCMeta, abstractmethod
|
||
|
from functools import partial
|
||
|
from numbers import Integral, Real
|
||
|
|
||
|
import numpy as np
|
||
|
from scipy import linalg, optimize, sparse
|
||
|
from scipy.sparse import linalg as sp_linalg
|
||
|
|
||
|
from ..base import MultiOutputMixin, RegressorMixin, _fit_context, is_classifier
|
||
|
from ..exceptions import ConvergenceWarning
|
||
|
from ..metrics import check_scoring, get_scorer_names
|
||
|
from ..model_selection import GridSearchCV
|
||
|
from ..preprocessing import LabelBinarizer
|
||
|
from ..utils import (
|
||
|
check_array,
|
||
|
check_consistent_length,
|
||
|
check_scalar,
|
||
|
column_or_1d,
|
||
|
compute_sample_weight,
|
||
|
)
|
||
|
from ..utils._param_validation import Interval, StrOptions, validate_params
|
||
|
from ..utils.extmath import row_norms, safe_sparse_dot
|
||
|
from ..utils.fixes import _sparse_linalg_cg
|
||
|
from ..utils.metadata_routing import (
|
||
|
_raise_for_unsupported_routing,
|
||
|
_RoutingNotSupportedMixin,
|
||
|
)
|
||
|
from ..utils.sparsefuncs import mean_variance_axis
|
||
|
from ..utils.validation import _check_sample_weight, check_is_fitted
|
||
|
from ._base import LinearClassifierMixin, LinearModel, _preprocess_data, _rescale_data
|
||
|
from ._sag import sag_solver
|
||
|
|
||
|
|
||
|
def _get_rescaled_operator(X, X_offset, sample_weight_sqrt):
|
||
|
"""Create LinearOperator for matrix products with implicit centering.
|
||
|
|
||
|
Matrix product `LinearOperator @ coef` returns `(X - X_offset) @ coef`.
|
||
|
"""
|
||
|
|
||
|
def matvec(b):
|
||
|
return X.dot(b) - sample_weight_sqrt * b.dot(X_offset)
|
||
|
|
||
|
def rmatvec(b):
|
||
|
return X.T.dot(b) - X_offset * b.dot(sample_weight_sqrt)
|
||
|
|
||
|
X1 = sparse.linalg.LinearOperator(shape=X.shape, matvec=matvec, rmatvec=rmatvec)
|
||
|
return X1
|
||
|
|
||
|
|
||
|
def _solve_sparse_cg(
|
||
|
X,
|
||
|
y,
|
||
|
alpha,
|
||
|
max_iter=None,
|
||
|
tol=1e-4,
|
||
|
verbose=0,
|
||
|
X_offset=None,
|
||
|
X_scale=None,
|
||
|
sample_weight_sqrt=None,
|
||
|
):
|
||
|
if sample_weight_sqrt is None:
|
||
|
sample_weight_sqrt = np.ones(X.shape[0], dtype=X.dtype)
|
||
|
|
||
|
n_samples, n_features = X.shape
|
||
|
|
||
|
if X_offset is None or X_scale is None:
|
||
|
X1 = sp_linalg.aslinearoperator(X)
|
||
|
else:
|
||
|
X_offset_scale = X_offset / X_scale
|
||
|
X1 = _get_rescaled_operator(X, X_offset_scale, sample_weight_sqrt)
|
||
|
|
||
|
coefs = np.empty((y.shape[1], n_features), dtype=X.dtype)
|
||
|
|
||
|
if n_features > n_samples:
|
||
|
|
||
|
def create_mv(curr_alpha):
|
||
|
def _mv(x):
|
||
|
return X1.matvec(X1.rmatvec(x)) + curr_alpha * x
|
||
|
|
||
|
return _mv
|
||
|
|
||
|
else:
|
||
|
|
||
|
def create_mv(curr_alpha):
|
||
|
def _mv(x):
|
||
|
return X1.rmatvec(X1.matvec(x)) + curr_alpha * x
|
||
|
|
||
|
return _mv
|
||
|
|
||
|
for i in range(y.shape[1]):
|
||
|
y_column = y[:, i]
|
||
|
|
||
|
mv = create_mv(alpha[i])
|
||
|
if n_features > n_samples:
|
||
|
# kernel ridge
|
||
|
# w = X.T * inv(X X^t + alpha*Id) y
|
||
|
C = sp_linalg.LinearOperator(
|
||
|
(n_samples, n_samples), matvec=mv, dtype=X.dtype
|
||
|
)
|
||
|
coef, info = _sparse_linalg_cg(C, y_column, rtol=tol)
|
||
|
coefs[i] = X1.rmatvec(coef)
|
||
|
else:
|
||
|
# linear ridge
|
||
|
# w = inv(X^t X + alpha*Id) * X.T y
|
||
|
y_column = X1.rmatvec(y_column)
|
||
|
C = sp_linalg.LinearOperator(
|
||
|
(n_features, n_features), matvec=mv, dtype=X.dtype
|
||
|
)
|
||
|
coefs[i], info = _sparse_linalg_cg(C, y_column, maxiter=max_iter, rtol=tol)
|
||
|
|
||
|
if info < 0:
|
||
|
raise ValueError("Failed with error code %d" % info)
|
||
|
|
||
|
if max_iter is None and info > 0 and verbose:
|
||
|
warnings.warn(
|
||
|
"sparse_cg did not converge after %d iterations." % info,
|
||
|
ConvergenceWarning,
|
||
|
)
|
||
|
|
||
|
return coefs
|
||
|
|
||
|
|
||
|
def _solve_lsqr(
|
||
|
X,
|
||
|
y,
|
||
|
*,
|
||
|
alpha,
|
||
|
fit_intercept=True,
|
||
|
max_iter=None,
|
||
|
tol=1e-4,
|
||
|
X_offset=None,
|
||
|
X_scale=None,
|
||
|
sample_weight_sqrt=None,
|
||
|
):
|
||
|
"""Solve Ridge regression via LSQR.
|
||
|
|
||
|
We expect that y is always mean centered.
|
||
|
If X is dense, we expect it to be mean centered such that we can solve
|
||
|
||y - Xw||_2^2 + alpha * ||w||_2^2
|
||
|
|
||
|
If X is sparse, we expect X_offset to be given such that we can solve
|
||
|
||y - (X - X_offset)w||_2^2 + alpha * ||w||_2^2
|
||
|
|
||
|
With sample weights S=diag(sample_weight), this becomes
|
||
|
||sqrt(S) (y - (X - X_offset) w)||_2^2 + alpha * ||w||_2^2
|
||
|
and we expect y and X to already be rescaled, i.e. sqrt(S) @ y, sqrt(S) @ X. In
|
||
|
this case, X_offset is the sample_weight weighted mean of X before scaling by
|
||
|
sqrt(S). The objective then reads
|
||
|
||y - (X - sqrt(S) X_offset) w)||_2^2 + alpha * ||w||_2^2
|
||
|
"""
|
||
|
if sample_weight_sqrt is None:
|
||
|
sample_weight_sqrt = np.ones(X.shape[0], dtype=X.dtype)
|
||
|
|
||
|
if sparse.issparse(X) and fit_intercept:
|
||
|
X_offset_scale = X_offset / X_scale
|
||
|
X1 = _get_rescaled_operator(X, X_offset_scale, sample_weight_sqrt)
|
||
|
else:
|
||
|
# No need to touch anything
|
||
|
X1 = X
|
||
|
|
||
|
n_samples, n_features = X.shape
|
||
|
coefs = np.empty((y.shape[1], n_features), dtype=X.dtype)
|
||
|
n_iter = np.empty(y.shape[1], dtype=np.int32)
|
||
|
|
||
|
# According to the lsqr documentation, alpha = damp^2.
|
||
|
sqrt_alpha = np.sqrt(alpha)
|
||
|
|
||
|
for i in range(y.shape[1]):
|
||
|
y_column = y[:, i]
|
||
|
info = sp_linalg.lsqr(
|
||
|
X1, y_column, damp=sqrt_alpha[i], atol=tol, btol=tol, iter_lim=max_iter
|
||
|
)
|
||
|
coefs[i] = info[0]
|
||
|
n_iter[i] = info[2]
|
||
|
|
||
|
return coefs, n_iter
|
||
|
|
||
|
|
||
|
def _solve_cholesky(X, y, alpha):
|
||
|
# w = inv(X^t X + alpha*Id) * X.T y
|
||
|
n_features = X.shape[1]
|
||
|
n_targets = y.shape[1]
|
||
|
|
||
|
A = safe_sparse_dot(X.T, X, dense_output=True)
|
||
|
Xy = safe_sparse_dot(X.T, y, dense_output=True)
|
||
|
|
||
|
one_alpha = np.array_equal(alpha, len(alpha) * [alpha[0]])
|
||
|
|
||
|
if one_alpha:
|
||
|
A.flat[:: n_features + 1] += alpha[0]
|
||
|
return linalg.solve(A, Xy, assume_a="pos", overwrite_a=True).T
|
||
|
else:
|
||
|
coefs = np.empty([n_targets, n_features], dtype=X.dtype)
|
||
|
for coef, target, current_alpha in zip(coefs, Xy.T, alpha):
|
||
|
A.flat[:: n_features + 1] += current_alpha
|
||
|
coef[:] = linalg.solve(A, target, assume_a="pos", overwrite_a=False).ravel()
|
||
|
A.flat[:: n_features + 1] -= current_alpha
|
||
|
return coefs
|
||
|
|
||
|
|
||
|
def _solve_cholesky_kernel(K, y, alpha, sample_weight=None, copy=False):
|
||
|
# dual_coef = inv(X X^t + alpha*Id) y
|
||
|
n_samples = K.shape[0]
|
||
|
n_targets = y.shape[1]
|
||
|
|
||
|
if copy:
|
||
|
K = K.copy()
|
||
|
|
||
|
alpha = np.atleast_1d(alpha)
|
||
|
one_alpha = (alpha == alpha[0]).all()
|
||
|
has_sw = isinstance(sample_weight, np.ndarray) or sample_weight not in [1.0, None]
|
||
|
|
||
|
if has_sw:
|
||
|
# Unlike other solvers, we need to support sample_weight directly
|
||
|
# because K might be a pre-computed kernel.
|
||
|
sw = np.sqrt(np.atleast_1d(sample_weight))
|
||
|
y = y * sw[:, np.newaxis]
|
||
|
K *= np.outer(sw, sw)
|
||
|
|
||
|
if one_alpha:
|
||
|
# Only one penalty, we can solve multi-target problems in one time.
|
||
|
K.flat[:: n_samples + 1] += alpha[0]
|
||
|
|
||
|
try:
|
||
|
# Note: we must use overwrite_a=False in order to be able to
|
||
|
# use the fall-back solution below in case a LinAlgError
|
||
|
# is raised
|
||
|
dual_coef = linalg.solve(K, y, assume_a="pos", overwrite_a=False)
|
||
|
except np.linalg.LinAlgError:
|
||
|
warnings.warn(
|
||
|
"Singular matrix in solving dual problem. Using "
|
||
|
"least-squares solution instead."
|
||
|
)
|
||
|
dual_coef = linalg.lstsq(K, y)[0]
|
||
|
|
||
|
# K is expensive to compute and store in memory so change it back in
|
||
|
# case it was user-given.
|
||
|
K.flat[:: n_samples + 1] -= alpha[0]
|
||
|
|
||
|
if has_sw:
|
||
|
dual_coef *= sw[:, np.newaxis]
|
||
|
|
||
|
return dual_coef
|
||
|
else:
|
||
|
# One penalty per target. We need to solve each target separately.
|
||
|
dual_coefs = np.empty([n_targets, n_samples], K.dtype)
|
||
|
|
||
|
for dual_coef, target, current_alpha in zip(dual_coefs, y.T, alpha):
|
||
|
K.flat[:: n_samples + 1] += current_alpha
|
||
|
|
||
|
dual_coef[:] = linalg.solve(
|
||
|
K, target, assume_a="pos", overwrite_a=False
|
||
|
).ravel()
|
||
|
|
||
|
K.flat[:: n_samples + 1] -= current_alpha
|
||
|
|
||
|
if has_sw:
|
||
|
dual_coefs *= sw[np.newaxis, :]
|
||
|
|
||
|
return dual_coefs.T
|
||
|
|
||
|
|
||
|
def _solve_svd(X, y, alpha):
|
||
|
U, s, Vt = linalg.svd(X, full_matrices=False)
|
||
|
idx = s > 1e-15 # same default value as scipy.linalg.pinv
|
||
|
s_nnz = s[idx][:, np.newaxis]
|
||
|
UTy = np.dot(U.T, y)
|
||
|
d = np.zeros((s.size, alpha.size), dtype=X.dtype)
|
||
|
d[idx] = s_nnz / (s_nnz**2 + alpha)
|
||
|
d_UT_y = d * UTy
|
||
|
return np.dot(Vt.T, d_UT_y).T
|
||
|
|
||
|
|
||
|
def _solve_lbfgs(
|
||
|
X,
|
||
|
y,
|
||
|
alpha,
|
||
|
positive=True,
|
||
|
max_iter=None,
|
||
|
tol=1e-4,
|
||
|
X_offset=None,
|
||
|
X_scale=None,
|
||
|
sample_weight_sqrt=None,
|
||
|
):
|
||
|
"""Solve ridge regression with LBFGS.
|
||
|
|
||
|
The main purpose is fitting with forcing coefficients to be positive.
|
||
|
For unconstrained ridge regression, there are faster dedicated solver methods.
|
||
|
Note that with positive bounds on the coefficients, LBFGS seems faster
|
||
|
than scipy.optimize.lsq_linear.
|
||
|
"""
|
||
|
n_samples, n_features = X.shape
|
||
|
|
||
|
options = {}
|
||
|
if max_iter is not None:
|
||
|
options["maxiter"] = max_iter
|
||
|
config = {
|
||
|
"method": "L-BFGS-B",
|
||
|
"tol": tol,
|
||
|
"jac": True,
|
||
|
"options": options,
|
||
|
}
|
||
|
if positive:
|
||
|
config["bounds"] = [(0, np.inf)] * n_features
|
||
|
|
||
|
if X_offset is not None and X_scale is not None:
|
||
|
X_offset_scale = X_offset / X_scale
|
||
|
else:
|
||
|
X_offset_scale = None
|
||
|
|
||
|
if sample_weight_sqrt is None:
|
||
|
sample_weight_sqrt = np.ones(X.shape[0], dtype=X.dtype)
|
||
|
|
||
|
coefs = np.empty((y.shape[1], n_features), dtype=X.dtype)
|
||
|
|
||
|
for i in range(y.shape[1]):
|
||
|
x0 = np.zeros((n_features,))
|
||
|
y_column = y[:, i]
|
||
|
|
||
|
def func(w):
|
||
|
residual = X.dot(w) - y_column
|
||
|
if X_offset_scale is not None:
|
||
|
residual -= sample_weight_sqrt * w.dot(X_offset_scale)
|
||
|
f = 0.5 * residual.dot(residual) + 0.5 * alpha[i] * w.dot(w)
|
||
|
grad = X.T @ residual + alpha[i] * w
|
||
|
if X_offset_scale is not None:
|
||
|
grad -= X_offset_scale * residual.dot(sample_weight_sqrt)
|
||
|
|
||
|
return f, grad
|
||
|
|
||
|
result = optimize.minimize(func, x0, **config)
|
||
|
if not result["success"]:
|
||
|
warnings.warn(
|
||
|
(
|
||
|
"The lbfgs solver did not converge. Try increasing max_iter "
|
||
|
f"or tol. Currently: max_iter={max_iter} and tol={tol}"
|
||
|
),
|
||
|
ConvergenceWarning,
|
||
|
)
|
||
|
coefs[i] = result["x"]
|
||
|
|
||
|
return coefs
|
||
|
|
||
|
|
||
|
def _get_valid_accept_sparse(is_X_sparse, solver):
|
||
|
if is_X_sparse and solver in ["auto", "sag", "saga"]:
|
||
|
return "csr"
|
||
|
else:
|
||
|
return ["csr", "csc", "coo"]
|
||
|
|
||
|
|
||
|
@validate_params(
|
||
|
{
|
||
|
"X": ["array-like", "sparse matrix", sp_linalg.LinearOperator],
|
||
|
"y": ["array-like"],
|
||
|
"alpha": [Interval(Real, 0, None, closed="left"), "array-like"],
|
||
|
"sample_weight": [
|
||
|
Interval(Real, None, None, closed="neither"),
|
||
|
"array-like",
|
||
|
None,
|
||
|
],
|
||
|
"solver": [
|
||
|
StrOptions(
|
||
|
{"auto", "svd", "cholesky", "lsqr", "sparse_cg", "sag", "saga", "lbfgs"}
|
||
|
)
|
||
|
],
|
||
|
"max_iter": [Interval(Integral, 0, None, closed="left"), None],
|
||
|
"tol": [Interval(Real, 0, None, closed="left")],
|
||
|
"verbose": ["verbose"],
|
||
|
"positive": ["boolean"],
|
||
|
"random_state": ["random_state"],
|
||
|
"return_n_iter": ["boolean"],
|
||
|
"return_intercept": ["boolean"],
|
||
|
"check_input": ["boolean"],
|
||
|
},
|
||
|
prefer_skip_nested_validation=True,
|
||
|
)
|
||
|
def ridge_regression(
|
||
|
X,
|
||
|
y,
|
||
|
alpha,
|
||
|
*,
|
||
|
sample_weight=None,
|
||
|
solver="auto",
|
||
|
max_iter=None,
|
||
|
tol=1e-4,
|
||
|
verbose=0,
|
||
|
positive=False,
|
||
|
random_state=None,
|
||
|
return_n_iter=False,
|
||
|
return_intercept=False,
|
||
|
check_input=True,
|
||
|
):
|
||
|
"""Solve the ridge equation by the method of normal equations.
|
||
|
|
||
|
Read more in the :ref:`User Guide <ridge_regression>`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {array-like, sparse matrix, LinearOperator} of shape \
|
||
|
(n_samples, n_features)
|
||
|
Training data.
|
||
|
|
||
|
y : array-like of shape (n_samples,) or (n_samples, n_targets)
|
||
|
Target values.
|
||
|
|
||
|
alpha : float or array-like of shape (n_targets,)
|
||
|
Constant that multiplies the L2 term, controlling regularization
|
||
|
strength. `alpha` must be a non-negative float i.e. in `[0, inf)`.
|
||
|
|
||
|
When `alpha = 0`, the objective is equivalent to ordinary least
|
||
|
squares, solved by the :class:`LinearRegression` object. For numerical
|
||
|
reasons, using `alpha = 0` with the `Ridge` object is not advised.
|
||
|
Instead, you should use the :class:`LinearRegression` object.
|
||
|
|
||
|
If an array is passed, penalties are assumed to be specific to the
|
||
|
targets. Hence they must correspond in number.
|
||
|
|
||
|
sample_weight : float or array-like of shape (n_samples,), default=None
|
||
|
Individual weights for each sample. If given a float, every sample
|
||
|
will have the same weight. If sample_weight is not None and
|
||
|
solver='auto', the solver will be set to 'cholesky'.
|
||
|
|
||
|
.. versionadded:: 0.17
|
||
|
|
||
|
solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', \
|
||
|
'sag', 'saga', 'lbfgs'}, default='auto'
|
||
|
Solver to use in the computational routines:
|
||
|
|
||
|
- 'auto' chooses the solver automatically based on the type of data.
|
||
|
|
||
|
- 'svd' uses a Singular Value Decomposition of X to compute the Ridge
|
||
|
coefficients. It is the most stable solver, in particular more stable
|
||
|
for singular matrices than 'cholesky' at the cost of being slower.
|
||
|
|
||
|
- 'cholesky' uses the standard scipy.linalg.solve function to
|
||
|
obtain a closed-form solution via a Cholesky decomposition of
|
||
|
dot(X.T, X)
|
||
|
|
||
|
- 'sparse_cg' uses the conjugate gradient solver as found in
|
||
|
scipy.sparse.linalg.cg. As an iterative algorithm, this solver is
|
||
|
more appropriate than 'cholesky' for large-scale data
|
||
|
(possibility to set `tol` and `max_iter`).
|
||
|
|
||
|
- 'lsqr' uses the dedicated regularized least-squares routine
|
||
|
scipy.sparse.linalg.lsqr. It is the fastest and uses an iterative
|
||
|
procedure.
|
||
|
|
||
|
- 'sag' uses a Stochastic Average Gradient descent, and 'saga' uses
|
||
|
its improved, unbiased version named SAGA. Both methods also use an
|
||
|
iterative procedure, and are often faster than other solvers when
|
||
|
both n_samples and n_features are large. Note that 'sag' and
|
||
|
'saga' fast convergence is only guaranteed on features with
|
||
|
approximately the same scale. You can preprocess the data with a
|
||
|
scaler from sklearn.preprocessing.
|
||
|
|
||
|
- 'lbfgs' uses L-BFGS-B algorithm implemented in
|
||
|
`scipy.optimize.minimize`. It can be used only when `positive`
|
||
|
is True.
|
||
|
|
||
|
All solvers except 'svd' support both dense and sparse data. However, only
|
||
|
'lsqr', 'sag', 'sparse_cg', and 'lbfgs' support sparse input when
|
||
|
`fit_intercept` is True.
|
||
|
|
||
|
.. versionadded:: 0.17
|
||
|
Stochastic Average Gradient descent solver.
|
||
|
.. versionadded:: 0.19
|
||
|
SAGA solver.
|
||
|
|
||
|
max_iter : int, default=None
|
||
|
Maximum number of iterations for conjugate gradient solver.
|
||
|
For the 'sparse_cg' and 'lsqr' solvers, the default value is determined
|
||
|
by scipy.sparse.linalg. For 'sag' and saga solver, the default value is
|
||
|
1000. For 'lbfgs' solver, the default value is 15000.
|
||
|
|
||
|
tol : float, default=1e-4
|
||
|
Precision of the solution. Note that `tol` has no effect for solvers 'svd' and
|
||
|
'cholesky'.
|
||
|
|
||
|
.. versionchanged:: 1.2
|
||
|
Default value changed from 1e-3 to 1e-4 for consistency with other linear
|
||
|
models.
|
||
|
|
||
|
verbose : int, default=0
|
||
|
Verbosity level. Setting verbose > 0 will display additional
|
||
|
information depending on the solver used.
|
||
|
|
||
|
positive : bool, default=False
|
||
|
When set to ``True``, forces the coefficients to be positive.
|
||
|
Only 'lbfgs' solver is supported in this case.
|
||
|
|
||
|
random_state : int, RandomState instance, default=None
|
||
|
Used when ``solver`` == 'sag' or 'saga' to shuffle the data.
|
||
|
See :term:`Glossary <random_state>` for details.
|
||
|
|
||
|
return_n_iter : bool, default=False
|
||
|
If True, the method also returns `n_iter`, the actual number of
|
||
|
iteration performed by the solver.
|
||
|
|
||
|
.. versionadded:: 0.17
|
||
|
|
||
|
return_intercept : bool, default=False
|
||
|
If True and if X is sparse, the method also returns the intercept,
|
||
|
and the solver is automatically changed to 'sag'. This is only a
|
||
|
temporary fix for fitting the intercept with sparse data. For dense
|
||
|
data, use sklearn.linear_model._preprocess_data before your regression.
|
||
|
|
||
|
.. versionadded:: 0.17
|
||
|
|
||
|
check_input : bool, default=True
|
||
|
If False, the input arrays X and y will not be checked.
|
||
|
|
||
|
.. versionadded:: 0.21
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
coef : ndarray of shape (n_features,) or (n_targets, n_features)
|
||
|
Weight vector(s).
|
||
|
|
||
|
n_iter : int, optional
|
||
|
The actual number of iteration performed by the solver.
|
||
|
Only returned if `return_n_iter` is True.
|
||
|
|
||
|
intercept : float or ndarray of shape (n_targets,)
|
||
|
The intercept of the model. Only returned if `return_intercept`
|
||
|
is True and if X is a scipy sparse array.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This function won't compute the intercept.
|
||
|
|
||
|
Regularization improves the conditioning of the problem and
|
||
|
reduces the variance of the estimates. Larger values specify stronger
|
||
|
regularization. Alpha corresponds to ``1 / (2C)`` in other linear
|
||
|
models such as :class:`~sklearn.linear_model.LogisticRegression` or
|
||
|
:class:`~sklearn.svm.LinearSVC`. If an array is passed, penalties are
|
||
|
assumed to be specific to the targets. Hence they must correspond in
|
||
|
number.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from sklearn.datasets import make_regression
|
||
|
>>> from sklearn.linear_model import ridge_regression
|
||
|
>>> rng = np.random.RandomState(0)
|
||
|
>>> X = rng.randn(100, 4)
|
||
|
>>> y = 2.0 * X[:, 0] - 1.0 * X[:, 1] + 0.1 * rng.standard_normal(100)
|
||
|
>>> coef, intercept = ridge_regression(X, y, alpha=1.0, return_intercept=True)
|
||
|
>>> list(coef)
|
||
|
[1.9..., -1.0..., -0.0..., -0.0...]
|
||
|
>>> intercept
|
||
|
-0.0...
|
||
|
"""
|
||
|
return _ridge_regression(
|
||
|
X,
|
||
|
y,
|
||
|
alpha,
|
||
|
sample_weight=sample_weight,
|
||
|
solver=solver,
|
||
|
max_iter=max_iter,
|
||
|
tol=tol,
|
||
|
verbose=verbose,
|
||
|
positive=positive,
|
||
|
random_state=random_state,
|
||
|
return_n_iter=return_n_iter,
|
||
|
return_intercept=return_intercept,
|
||
|
X_scale=None,
|
||
|
X_offset=None,
|
||
|
check_input=check_input,
|
||
|
)
|
||
|
|
||
|
|
||
|
def _ridge_regression(
|
||
|
X,
|
||
|
y,
|
||
|
alpha,
|
||
|
sample_weight=None,
|
||
|
solver="auto",
|
||
|
max_iter=None,
|
||
|
tol=1e-4,
|
||
|
verbose=0,
|
||
|
positive=False,
|
||
|
random_state=None,
|
||
|
return_n_iter=False,
|
||
|
return_intercept=False,
|
||
|
X_scale=None,
|
||
|
X_offset=None,
|
||
|
check_input=True,
|
||
|
fit_intercept=False,
|
||
|
):
|
||
|
has_sw = sample_weight is not None
|
||
|
|
||
|
if solver == "auto":
|
||
|
if positive:
|
||
|
solver = "lbfgs"
|
||
|
elif return_intercept:
|
||
|
# sag supports fitting intercept directly
|
||
|
solver = "sag"
|
||
|
elif not sparse.issparse(X):
|
||
|
solver = "cholesky"
|
||
|
else:
|
||
|
solver = "sparse_cg"
|
||
|
|
||
|
if solver not in ("sparse_cg", "cholesky", "svd", "lsqr", "sag", "saga", "lbfgs"):
|
||
|
raise ValueError(
|
||
|
"Known solvers are 'sparse_cg', 'cholesky', 'svd'"
|
||
|
" 'lsqr', 'sag', 'saga' or 'lbfgs'. Got %s." % solver
|
||
|
)
|
||
|
|
||
|
if positive and solver != "lbfgs":
|
||
|
raise ValueError(
|
||
|
"When positive=True, only 'lbfgs' solver can be used. "
|
||
|
f"Please change solver {solver} to 'lbfgs' "
|
||
|
"or set positive=False."
|
||
|
)
|
||
|
|
||
|
if solver == "lbfgs" and not positive:
|
||
|
raise ValueError(
|
||
|
"'lbfgs' solver can be used only when positive=True. "
|
||
|
"Please use another solver."
|
||
|
)
|
||
|
|
||
|
if return_intercept and solver != "sag":
|
||
|
raise ValueError(
|
||
|
"In Ridge, only 'sag' solver can directly fit the "
|
||
|
"intercept. Please change solver to 'sag' or set "
|
||
|
"return_intercept=False."
|
||
|
)
|
||
|
|
||
|
if check_input:
|
||
|
_dtype = [np.float64, np.float32]
|
||
|
_accept_sparse = _get_valid_accept_sparse(sparse.issparse(X), solver)
|
||
|
X = check_array(X, accept_sparse=_accept_sparse, dtype=_dtype, order="C")
|
||
|
y = check_array(y, dtype=X.dtype, ensure_2d=False, order=None)
|
||
|
check_consistent_length(X, y)
|
||
|
|
||
|
n_samples, n_features = X.shape
|
||
|
|
||
|
if y.ndim > 2:
|
||
|
raise ValueError("Target y has the wrong shape %s" % str(y.shape))
|
||
|
|
||
|
ravel = False
|
||
|
if y.ndim == 1:
|
||
|
y = y.reshape(-1, 1)
|
||
|
ravel = True
|
||
|
|
||
|
n_samples_, n_targets = y.shape
|
||
|
|
||
|
if n_samples != n_samples_:
|
||
|
raise ValueError(
|
||
|
"Number of samples in X and y does not correspond: %d != %d"
|
||
|
% (n_samples, n_samples_)
|
||
|
)
|
||
|
|
||
|
if has_sw:
|
||
|
sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)
|
||
|
|
||
|
if solver not in ["sag", "saga"]:
|
||
|
# SAG supports sample_weight directly. For other solvers,
|
||
|
# we implement sample_weight via a simple rescaling.
|
||
|
X, y, sample_weight_sqrt = _rescale_data(X, y, sample_weight)
|
||
|
|
||
|
# Some callers of this method might pass alpha as single
|
||
|
# element array which already has been validated.
|
||
|
if alpha is not None and not isinstance(alpha, np.ndarray):
|
||
|
alpha = check_scalar(
|
||
|
alpha,
|
||
|
"alpha",
|
||
|
target_type=numbers.Real,
|
||
|
min_val=0.0,
|
||
|
include_boundaries="left",
|
||
|
)
|
||
|
|
||
|
# There should be either 1 or n_targets penalties
|
||
|
alpha = np.asarray(alpha, dtype=X.dtype).ravel()
|
||
|
if alpha.size not in [1, n_targets]:
|
||
|
raise ValueError(
|
||
|
"Number of targets and number of penalties do not correspond: %d != %d"
|
||
|
% (alpha.size, n_targets)
|
||
|
)
|
||
|
|
||
|
if alpha.size == 1 and n_targets > 1:
|
||
|
alpha = np.repeat(alpha, n_targets)
|
||
|
|
||
|
n_iter = None
|
||
|
if solver == "sparse_cg":
|
||
|
coef = _solve_sparse_cg(
|
||
|
X,
|
||
|
y,
|
||
|
alpha,
|
||
|
max_iter=max_iter,
|
||
|
tol=tol,
|
||
|
verbose=verbose,
|
||
|
X_offset=X_offset,
|
||
|
X_scale=X_scale,
|
||
|
sample_weight_sqrt=sample_weight_sqrt if has_sw else None,
|
||
|
)
|
||
|
|
||
|
elif solver == "lsqr":
|
||
|
coef, n_iter = _solve_lsqr(
|
||
|
X,
|
||
|
y,
|
||
|
alpha=alpha,
|
||
|
fit_intercept=fit_intercept,
|
||
|
max_iter=max_iter,
|
||
|
tol=tol,
|
||
|
X_offset=X_offset,
|
||
|
X_scale=X_scale,
|
||
|
sample_weight_sqrt=sample_weight_sqrt if has_sw else None,
|
||
|
)
|
||
|
|
||
|
elif solver == "cholesky":
|
||
|
if n_features > n_samples:
|
||
|
K = safe_sparse_dot(X, X.T, dense_output=True)
|
||
|
try:
|
||
|
dual_coef = _solve_cholesky_kernel(K, y, alpha)
|
||
|
|
||
|
coef = safe_sparse_dot(X.T, dual_coef, dense_output=True).T
|
||
|
except linalg.LinAlgError:
|
||
|
# use SVD solver if matrix is singular
|
||
|
solver = "svd"
|
||
|
else:
|
||
|
try:
|
||
|
coef = _solve_cholesky(X, y, alpha)
|
||
|
except linalg.LinAlgError:
|
||
|
# use SVD solver if matrix is singular
|
||
|
solver = "svd"
|
||
|
|
||
|
elif solver in ["sag", "saga"]:
|
||
|
# precompute max_squared_sum for all targets
|
||
|
max_squared_sum = row_norms(X, squared=True).max()
|
||
|
|
||
|
coef = np.empty((y.shape[1], n_features), dtype=X.dtype)
|
||
|
n_iter = np.empty(y.shape[1], dtype=np.int32)
|
||
|
intercept = np.zeros((y.shape[1],), dtype=X.dtype)
|
||
|
for i, (alpha_i, target) in enumerate(zip(alpha, y.T)):
|
||
|
init = {
|
||
|
"coef": np.zeros((n_features + int(return_intercept), 1), dtype=X.dtype)
|
||
|
}
|
||
|
coef_, n_iter_, _ = sag_solver(
|
||
|
X,
|
||
|
target.ravel(),
|
||
|
sample_weight,
|
||
|
"squared",
|
||
|
alpha_i,
|
||
|
0,
|
||
|
max_iter,
|
||
|
tol,
|
||
|
verbose,
|
||
|
random_state,
|
||
|
False,
|
||
|
max_squared_sum,
|
||
|
init,
|
||
|
is_saga=solver == "saga",
|
||
|
)
|
||
|
if return_intercept:
|
||
|
coef[i] = coef_[:-1]
|
||
|
intercept[i] = coef_[-1]
|
||
|
else:
|
||
|
coef[i] = coef_
|
||
|
n_iter[i] = n_iter_
|
||
|
|
||
|
if intercept.shape[0] == 1:
|
||
|
intercept = intercept[0]
|
||
|
coef = np.asarray(coef)
|
||
|
|
||
|
elif solver == "lbfgs":
|
||
|
coef = _solve_lbfgs(
|
||
|
X,
|
||
|
y,
|
||
|
alpha,
|
||
|
positive=positive,
|
||
|
tol=tol,
|
||
|
max_iter=max_iter,
|
||
|
X_offset=X_offset,
|
||
|
X_scale=X_scale,
|
||
|
sample_weight_sqrt=sample_weight_sqrt if has_sw else None,
|
||
|
)
|
||
|
|
||
|
if solver == "svd":
|
||
|
if sparse.issparse(X):
|
||
|
raise TypeError("SVD solver does not support sparse inputs currently")
|
||
|
coef = _solve_svd(X, y, alpha)
|
||
|
|
||
|
if ravel:
|
||
|
# When y was passed as a 1d-array, we flatten the coefficients.
|
||
|
coef = coef.ravel()
|
||
|
|
||
|
if return_n_iter and return_intercept:
|
||
|
return coef, n_iter, intercept
|
||
|
elif return_intercept:
|
||
|
return coef, intercept
|
||
|
elif return_n_iter:
|
||
|
return coef, n_iter
|
||
|
else:
|
||
|
return coef
|
||
|
|
||
|
|
||
|
class _BaseRidge(LinearModel, metaclass=ABCMeta):
|
||
|
_parameter_constraints: dict = {
|
||
|
"alpha": [Interval(Real, 0, None, closed="left"), np.ndarray],
|
||
|
"fit_intercept": ["boolean"],
|
||
|
"copy_X": ["boolean"],
|
||
|
"max_iter": [Interval(Integral, 1, None, closed="left"), None],
|
||
|
"tol": [Interval(Real, 0, None, closed="left")],
|
||
|
"solver": [
|
||
|
StrOptions(
|
||
|
{"auto", "svd", "cholesky", "lsqr", "sparse_cg", "sag", "saga", "lbfgs"}
|
||
|
)
|
||
|
],
|
||
|
"positive": ["boolean"],
|
||
|
"random_state": ["random_state"],
|
||
|
}
|
||
|
|
||
|
@abstractmethod
|
||
|
def __init__(
|
||
|
self,
|
||
|
alpha=1.0,
|
||
|
*,
|
||
|
fit_intercept=True,
|
||
|
copy_X=True,
|
||
|
max_iter=None,
|
||
|
tol=1e-4,
|
||
|
solver="auto",
|
||
|
positive=False,
|
||
|
random_state=None,
|
||
|
):
|
||
|
self.alpha = alpha
|
||
|
self.fit_intercept = fit_intercept
|
||
|
self.copy_X = copy_X
|
||
|
self.max_iter = max_iter
|
||
|
self.tol = tol
|
||
|
self.solver = solver
|
||
|
self.positive = positive
|
||
|
self.random_state = random_state
|
||
|
|
||
|
def fit(self, X, y, sample_weight=None):
|
||
|
if self.solver == "lbfgs" and not self.positive:
|
||
|
raise ValueError(
|
||
|
"'lbfgs' solver can be used only when positive=True. "
|
||
|
"Please use another solver."
|
||
|
)
|
||
|
|
||
|
if self.positive:
|
||
|
if self.solver not in ["auto", "lbfgs"]:
|
||
|
raise ValueError(
|
||
|
f"solver='{self.solver}' does not support positive fitting. Please"
|
||
|
" set the solver to 'auto' or 'lbfgs', or set `positive=False`"
|
||
|
)
|
||
|
else:
|
||
|
solver = self.solver
|
||
|
elif sparse.issparse(X) and self.fit_intercept:
|
||
|
if self.solver not in ["auto", "lbfgs", "lsqr", "sag", "sparse_cg"]:
|
||
|
raise ValueError(
|
||
|
"solver='{}' does not support fitting the intercept "
|
||
|
"on sparse data. Please set the solver to 'auto' or "
|
||
|
"'lsqr', 'sparse_cg', 'sag', 'lbfgs' "
|
||
|
"or set `fit_intercept=False`".format(self.solver)
|
||
|
)
|
||
|
if self.solver in ["lsqr", "lbfgs"]:
|
||
|
solver = self.solver
|
||
|
elif self.solver == "sag" and self.max_iter is None and self.tol > 1e-4:
|
||
|
warnings.warn(
|
||
|
'"sag" solver requires many iterations to fit '
|
||
|
"an intercept with sparse inputs. Either set the "
|
||
|
'solver to "auto" or "sparse_cg", or set a low '
|
||
|
'"tol" and a high "max_iter" (especially if inputs are '
|
||
|
"not standardized)."
|
||
|
)
|
||
|
solver = "sag"
|
||
|
else:
|
||
|
solver = "sparse_cg"
|
||
|
else:
|
||
|
solver = self.solver
|
||
|
|
||
|
if sample_weight is not None:
|
||
|
sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)
|
||
|
|
||
|
# when X is sparse we only remove offset from y
|
||
|
X, y, X_offset, y_offset, X_scale = _preprocess_data(
|
||
|
X,
|
||
|
y,
|
||
|
fit_intercept=self.fit_intercept,
|
||
|
copy=self.copy_X,
|
||
|
sample_weight=sample_weight,
|
||
|
)
|
||
|
|
||
|
if solver == "sag" and sparse.issparse(X) and self.fit_intercept:
|
||
|
self.coef_, self.n_iter_, self.intercept_ = _ridge_regression(
|
||
|
X,
|
||
|
y,
|
||
|
alpha=self.alpha,
|
||
|
sample_weight=sample_weight,
|
||
|
max_iter=self.max_iter,
|
||
|
tol=self.tol,
|
||
|
solver="sag",
|
||
|
positive=self.positive,
|
||
|
random_state=self.random_state,
|
||
|
return_n_iter=True,
|
||
|
return_intercept=True,
|
||
|
check_input=False,
|
||
|
)
|
||
|
# add the offset which was subtracted by _preprocess_data
|
||
|
self.intercept_ += y_offset
|
||
|
|
||
|
else:
|
||
|
if sparse.issparse(X) and self.fit_intercept:
|
||
|
# required to fit intercept with sparse_cg and lbfgs solver
|
||
|
params = {"X_offset": X_offset, "X_scale": X_scale}
|
||
|
else:
|
||
|
# for dense matrices or when intercept is set to 0
|
||
|
params = {}
|
||
|
|
||
|
self.coef_, self.n_iter_ = _ridge_regression(
|
||
|
X,
|
||
|
y,
|
||
|
alpha=self.alpha,
|
||
|
sample_weight=sample_weight,
|
||
|
max_iter=self.max_iter,
|
||
|
tol=self.tol,
|
||
|
solver=solver,
|
||
|
positive=self.positive,
|
||
|
random_state=self.random_state,
|
||
|
return_n_iter=True,
|
||
|
return_intercept=False,
|
||
|
check_input=False,
|
||
|
fit_intercept=self.fit_intercept,
|
||
|
**params,
|
||
|
)
|
||
|
self._set_intercept(X_offset, y_offset, X_scale)
|
||
|
|
||
|
return self
|
||
|
|
||
|
|
||
|
class Ridge(MultiOutputMixin, RegressorMixin, _BaseRidge):
|
||
|
"""Linear least squares with l2 regularization.
|
||
|
|
||
|
Minimizes the objective function::
|
||
|
|
||
|
||y - Xw||^2_2 + alpha * ||w||^2_2
|
||
|
|
||
|
This model solves a regression model where the loss function is
|
||
|
the linear least squares function and regularization is given by
|
||
|
the l2-norm. Also known as Ridge Regression or Tikhonov regularization.
|
||
|
This estimator has built-in support for multi-variate regression
|
||
|
(i.e., when y is a 2d-array of shape (n_samples, n_targets)).
|
||
|
|
||
|
Read more in the :ref:`User Guide <ridge_regression>`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
alpha : {float, ndarray of shape (n_targets,)}, default=1.0
|
||
|
Constant that multiplies the L2 term, controlling regularization
|
||
|
strength. `alpha` must be a non-negative float i.e. in `[0, inf)`.
|
||
|
|
||
|
When `alpha = 0`, the objective is equivalent to ordinary least
|
||
|
squares, solved by the :class:`LinearRegression` object. For numerical
|
||
|
reasons, using `alpha = 0` with the `Ridge` object is not advised.
|
||
|
Instead, you should use the :class:`LinearRegression` object.
|
||
|
|
||
|
If an array is passed, penalties are assumed to be specific to the
|
||
|
targets. Hence they must correspond in number.
|
||
|
|
||
|
fit_intercept : bool, default=True
|
||
|
Whether to fit the intercept for this model. If set
|
||
|
to false, no intercept will be used in calculations
|
||
|
(i.e. ``X`` and ``y`` are expected to be centered).
|
||
|
|
||
|
copy_X : bool, default=True
|
||
|
If True, X will be copied; else, it may be overwritten.
|
||
|
|
||
|
max_iter : int, default=None
|
||
|
Maximum number of iterations for conjugate gradient solver.
|
||
|
For 'sparse_cg' and 'lsqr' solvers, the default value is determined
|
||
|
by scipy.sparse.linalg. For 'sag' solver, the default value is 1000.
|
||
|
For 'lbfgs' solver, the default value is 15000.
|
||
|
|
||
|
tol : float, default=1e-4
|
||
|
The precision of the solution (`coef_`) is determined by `tol` which
|
||
|
specifies a different convergence criterion for each solver:
|
||
|
|
||
|
- 'svd': `tol` has no impact.
|
||
|
|
||
|
- 'cholesky': `tol` has no impact.
|
||
|
|
||
|
- 'sparse_cg': norm of residuals smaller than `tol`.
|
||
|
|
||
|
- 'lsqr': `tol` is set as atol and btol of scipy.sparse.linalg.lsqr,
|
||
|
which control the norm of the residual vector in terms of the norms of
|
||
|
matrix and coefficients.
|
||
|
|
||
|
- 'sag' and 'saga': relative change of coef smaller than `tol`.
|
||
|
|
||
|
- 'lbfgs': maximum of the absolute (projected) gradient=max|residuals|
|
||
|
smaller than `tol`.
|
||
|
|
||
|
.. versionchanged:: 1.2
|
||
|
Default value changed from 1e-3 to 1e-4 for consistency with other linear
|
||
|
models.
|
||
|
|
||
|
solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', \
|
||
|
'sag', 'saga', 'lbfgs'}, default='auto'
|
||
|
Solver to use in the computational routines:
|
||
|
|
||
|
- 'auto' chooses the solver automatically based on the type of data.
|
||
|
|
||
|
- 'svd' uses a Singular Value Decomposition of X to compute the Ridge
|
||
|
coefficients. It is the most stable solver, in particular more stable
|
||
|
for singular matrices than 'cholesky' at the cost of being slower.
|
||
|
|
||
|
- 'cholesky' uses the standard scipy.linalg.solve function to
|
||
|
obtain a closed-form solution.
|
||
|
|
||
|
- 'sparse_cg' uses the conjugate gradient solver as found in
|
||
|
scipy.sparse.linalg.cg. As an iterative algorithm, this solver is
|
||
|
more appropriate than 'cholesky' for large-scale data
|
||
|
(possibility to set `tol` and `max_iter`).
|
||
|
|
||
|
- 'lsqr' uses the dedicated regularized least-squares routine
|
||
|
scipy.sparse.linalg.lsqr. It is the fastest and uses an iterative
|
||
|
procedure.
|
||
|
|
||
|
- 'sag' uses a Stochastic Average Gradient descent, and 'saga' uses
|
||
|
its improved, unbiased version named SAGA. Both methods also use an
|
||
|
iterative procedure, and are often faster than other solvers when
|
||
|
both n_samples and n_features are large. Note that 'sag' and
|
||
|
'saga' fast convergence is only guaranteed on features with
|
||
|
approximately the same scale. You can preprocess the data with a
|
||
|
scaler from sklearn.preprocessing.
|
||
|
|
||
|
- 'lbfgs' uses L-BFGS-B algorithm implemented in
|
||
|
`scipy.optimize.minimize`. It can be used only when `positive`
|
||
|
is True.
|
||
|
|
||
|
All solvers except 'svd' support both dense and sparse data. However, only
|
||
|
'lsqr', 'sag', 'sparse_cg', and 'lbfgs' support sparse input when
|
||
|
`fit_intercept` is True.
|
||
|
|
||
|
.. versionadded:: 0.17
|
||
|
Stochastic Average Gradient descent solver.
|
||
|
.. versionadded:: 0.19
|
||
|
SAGA solver.
|
||
|
|
||
|
positive : bool, default=False
|
||
|
When set to ``True``, forces the coefficients to be positive.
|
||
|
Only 'lbfgs' solver is supported in this case.
|
||
|
|
||
|
random_state : int, RandomState instance, default=None
|
||
|
Used when ``solver`` == 'sag' or 'saga' to shuffle the data.
|
||
|
See :term:`Glossary <random_state>` for details.
|
||
|
|
||
|
.. versionadded:: 0.17
|
||
|
`random_state` to support Stochastic Average Gradient.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
coef_ : ndarray of shape (n_features,) or (n_targets, n_features)
|
||
|
Weight vector(s).
|
||
|
|
||
|
intercept_ : float or ndarray of shape (n_targets,)
|
||
|
Independent term in decision function. Set to 0.0 if
|
||
|
``fit_intercept = False``.
|
||
|
|
||
|
n_iter_ : None or ndarray of shape (n_targets,)
|
||
|
Actual number of iterations for each target. Available only for
|
||
|
sag and lsqr solvers. Other solvers will return None.
|
||
|
|
||
|
.. versionadded:: 0.17
|
||
|
|
||
|
n_features_in_ : int
|
||
|
Number of features seen during :term:`fit`.
|
||
|
|
||
|
.. versionadded:: 0.24
|
||
|
|
||
|
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
||
|
Names of features seen during :term:`fit`. Defined only when `X`
|
||
|
has feature names that are all strings.
|
||
|
|
||
|
.. versionadded:: 1.0
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
RidgeClassifier : Ridge classifier.
|
||
|
RidgeCV : Ridge regression with built-in cross validation.
|
||
|
:class:`~sklearn.kernel_ridge.KernelRidge` : Kernel ridge regression
|
||
|
combines ridge regression with the kernel trick.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Regularization improves the conditioning of the problem and
|
||
|
reduces the variance of the estimates. Larger values specify stronger
|
||
|
regularization. Alpha corresponds to ``1 / (2C)`` in other linear
|
||
|
models such as :class:`~sklearn.linear_model.LogisticRegression` or
|
||
|
:class:`~sklearn.svm.LinearSVC`.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from sklearn.linear_model import Ridge
|
||
|
>>> import numpy as np
|
||
|
>>> n_samples, n_features = 10, 5
|
||
|
>>> rng = np.random.RandomState(0)
|
||
|
>>> y = rng.randn(n_samples)
|
||
|
>>> X = rng.randn(n_samples, n_features)
|
||
|
>>> clf = Ridge(alpha=1.0)
|
||
|
>>> clf.fit(X, y)
|
||
|
Ridge()
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
alpha=1.0,
|
||
|
*,
|
||
|
fit_intercept=True,
|
||
|
copy_X=True,
|
||
|
max_iter=None,
|
||
|
tol=1e-4,
|
||
|
solver="auto",
|
||
|
positive=False,
|
||
|
random_state=None,
|
||
|
):
|
||
|
super().__init__(
|
||
|
alpha=alpha,
|
||
|
fit_intercept=fit_intercept,
|
||
|
copy_X=copy_X,
|
||
|
max_iter=max_iter,
|
||
|
tol=tol,
|
||
|
solver=solver,
|
||
|
positive=positive,
|
||
|
random_state=random_state,
|
||
|
)
|
||
|
|
||
|
@_fit_context(prefer_skip_nested_validation=True)
|
||
|
def fit(self, X, y, sample_weight=None):
|
||
|
"""Fit Ridge regression model.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {ndarray, sparse matrix} of shape (n_samples, n_features)
|
||
|
Training data.
|
||
|
|
||
|
y : ndarray of shape (n_samples,) or (n_samples, n_targets)
|
||
|
Target values.
|
||
|
|
||
|
sample_weight : float or ndarray of shape (n_samples,), default=None
|
||
|
Individual weights for each sample. If given a float, every sample
|
||
|
will have the same weight.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : object
|
||
|
Fitted estimator.
|
||
|
"""
|
||
|
_accept_sparse = _get_valid_accept_sparse(sparse.issparse(X), self.solver)
|
||
|
X, y = self._validate_data(
|
||
|
X,
|
||
|
y,
|
||
|
accept_sparse=_accept_sparse,
|
||
|
dtype=[np.float64, np.float32],
|
||
|
multi_output=True,
|
||
|
y_numeric=True,
|
||
|
)
|
||
|
return super().fit(X, y, sample_weight=sample_weight)
|
||
|
|
||
|
|
||
|
class _RidgeClassifierMixin(LinearClassifierMixin):
|
||
|
def _prepare_data(self, X, y, sample_weight, solver):
|
||
|
"""Validate `X` and `y` and binarize `y`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {ndarray, sparse matrix} of shape (n_samples, n_features)
|
||
|
Training data.
|
||
|
|
||
|
y : ndarray of shape (n_samples,)
|
||
|
Target values.
|
||
|
|
||
|
sample_weight : float or ndarray of shape (n_samples,), default=None
|
||
|
Individual weights for each sample. If given a float, every sample
|
||
|
will have the same weight.
|
||
|
|
||
|
solver : str
|
||
|
The solver used in `Ridge` to know which sparse format to support.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
X : {ndarray, sparse matrix} of shape (n_samples, n_features)
|
||
|
Validated training data.
|
||
|
|
||
|
y : ndarray of shape (n_samples,)
|
||
|
Validated target values.
|
||
|
|
||
|
sample_weight : ndarray of shape (n_samples,)
|
||
|
Validated sample weights.
|
||
|
|
||
|
Y : ndarray of shape (n_samples, n_classes)
|
||
|
The binarized version of `y`.
|
||
|
"""
|
||
|
accept_sparse = _get_valid_accept_sparse(sparse.issparse(X), solver)
|
||
|
X, y = self._validate_data(
|
||
|
X,
|
||
|
y,
|
||
|
accept_sparse=accept_sparse,
|
||
|
multi_output=True,
|
||
|
y_numeric=False,
|
||
|
)
|
||
|
|
||
|
self._label_binarizer = LabelBinarizer(pos_label=1, neg_label=-1)
|
||
|
Y = self._label_binarizer.fit_transform(y)
|
||
|
if not self._label_binarizer.y_type_.startswith("multilabel"):
|
||
|
y = column_or_1d(y, warn=True)
|
||
|
|
||
|
sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)
|
||
|
if self.class_weight:
|
||
|
sample_weight = sample_weight * compute_sample_weight(self.class_weight, y)
|
||
|
return X, y, sample_weight, Y
|
||
|
|
||
|
def predict(self, X):
|
||
|
"""Predict class labels for samples in `X`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {array-like, spare matrix} of shape (n_samples, n_features)
|
||
|
The data matrix for which we want to predict the targets.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
y_pred : ndarray of shape (n_samples,) or (n_samples, n_outputs)
|
||
|
Vector or matrix containing the predictions. In binary and
|
||
|
multiclass problems, this is a vector containing `n_samples`. In
|
||
|
a multilabel problem, it returns a matrix of shape
|
||
|
`(n_samples, n_outputs)`.
|
||
|
"""
|
||
|
check_is_fitted(self, attributes=["_label_binarizer"])
|
||
|
if self._label_binarizer.y_type_.startswith("multilabel"):
|
||
|
# Threshold such that the negative label is -1 and positive label
|
||
|
# is 1 to use the inverse transform of the label binarizer fitted
|
||
|
# during fit.
|
||
|
scores = 2 * (self.decision_function(X) > 0) - 1
|
||
|
return self._label_binarizer.inverse_transform(scores)
|
||
|
return super().predict(X)
|
||
|
|
||
|
@property
|
||
|
def classes_(self):
|
||
|
"""Classes labels."""
|
||
|
return self._label_binarizer.classes_
|
||
|
|
||
|
def _more_tags(self):
|
||
|
return {"multilabel": True}
|
||
|
|
||
|
|
||
|
class RidgeClassifier(_RidgeClassifierMixin, _BaseRidge):
|
||
|
"""Classifier using Ridge regression.
|
||
|
|
||
|
This classifier first converts the target values into ``{-1, 1}`` and
|
||
|
then treats the problem as a regression task (multi-output regression in
|
||
|
the multiclass case).
|
||
|
|
||
|
Read more in the :ref:`User Guide <ridge_regression>`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
alpha : float, default=1.0
|
||
|
Regularization strength; must be a positive float. Regularization
|
||
|
improves the conditioning of the problem and reduces the variance of
|
||
|
the estimates. Larger values specify stronger regularization.
|
||
|
Alpha corresponds to ``1 / (2C)`` in other linear models such as
|
||
|
:class:`~sklearn.linear_model.LogisticRegression` or
|
||
|
:class:`~sklearn.svm.LinearSVC`.
|
||
|
|
||
|
fit_intercept : bool, default=True
|
||
|
Whether to calculate the intercept for this model. If set to false, no
|
||
|
intercept will be used in calculations (e.g. data is expected to be
|
||
|
already centered).
|
||
|
|
||
|
copy_X : bool, default=True
|
||
|
If True, X will be copied; else, it may be overwritten.
|
||
|
|
||
|
max_iter : int, default=None
|
||
|
Maximum number of iterations for conjugate gradient solver.
|
||
|
The default value is determined by scipy.sparse.linalg.
|
||
|
|
||
|
tol : float, default=1e-4
|
||
|
The precision of the solution (`coef_`) is determined by `tol` which
|
||
|
specifies a different convergence criterion for each solver:
|
||
|
|
||
|
- 'svd': `tol` has no impact.
|
||
|
|
||
|
- 'cholesky': `tol` has no impact.
|
||
|
|
||
|
- 'sparse_cg': norm of residuals smaller than `tol`.
|
||
|
|
||
|
- 'lsqr': `tol` is set as atol and btol of scipy.sparse.linalg.lsqr,
|
||
|
which control the norm of the residual vector in terms of the norms of
|
||
|
matrix and coefficients.
|
||
|
|
||
|
- 'sag' and 'saga': relative change of coef smaller than `tol`.
|
||
|
|
||
|
- 'lbfgs': maximum of the absolute (projected) gradient=max|residuals|
|
||
|
smaller than `tol`.
|
||
|
|
||
|
.. versionchanged:: 1.2
|
||
|
Default value changed from 1e-3 to 1e-4 for consistency with other linear
|
||
|
models.
|
||
|
|
||
|
class_weight : dict or 'balanced', default=None
|
||
|
Weights associated with classes in the form ``{class_label: weight}``.
|
||
|
If not given, all classes are supposed to have weight one.
|
||
|
|
||
|
The "balanced" mode uses the values of y to automatically adjust
|
||
|
weights inversely proportional to class frequencies in the input data
|
||
|
as ``n_samples / (n_classes * np.bincount(y))``.
|
||
|
|
||
|
solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', \
|
||
|
'sag', 'saga', 'lbfgs'}, default='auto'
|
||
|
Solver to use in the computational routines:
|
||
|
|
||
|
- 'auto' chooses the solver automatically based on the type of data.
|
||
|
|
||
|
- 'svd' uses a Singular Value Decomposition of X to compute the Ridge
|
||
|
coefficients. It is the most stable solver, in particular more stable
|
||
|
for singular matrices than 'cholesky' at the cost of being slower.
|
||
|
|
||
|
- 'cholesky' uses the standard scipy.linalg.solve function to
|
||
|
obtain a closed-form solution.
|
||
|
|
||
|
- 'sparse_cg' uses the conjugate gradient solver as found in
|
||
|
scipy.sparse.linalg.cg. As an iterative algorithm, this solver is
|
||
|
more appropriate than 'cholesky' for large-scale data
|
||
|
(possibility to set `tol` and `max_iter`).
|
||
|
|
||
|
- 'lsqr' uses the dedicated regularized least-squares routine
|
||
|
scipy.sparse.linalg.lsqr. It is the fastest and uses an iterative
|
||
|
procedure.
|
||
|
|
||
|
- 'sag' uses a Stochastic Average Gradient descent, and 'saga' uses
|
||
|
its unbiased and more flexible version named SAGA. Both methods
|
||
|
use an iterative procedure, and are often faster than other solvers
|
||
|
when both n_samples and n_features are large. Note that 'sag' and
|
||
|
'saga' fast convergence is only guaranteed on features with
|
||
|
approximately the same scale. You can preprocess the data with a
|
||
|
scaler from sklearn.preprocessing.
|
||
|
|
||
|
.. versionadded:: 0.17
|
||
|
Stochastic Average Gradient descent solver.
|
||
|
.. versionadded:: 0.19
|
||
|
SAGA solver.
|
||
|
|
||
|
- 'lbfgs' uses L-BFGS-B algorithm implemented in
|
||
|
`scipy.optimize.minimize`. It can be used only when `positive`
|
||
|
is True.
|
||
|
|
||
|
positive : bool, default=False
|
||
|
When set to ``True``, forces the coefficients to be positive.
|
||
|
Only 'lbfgs' solver is supported in this case.
|
||
|
|
||
|
random_state : int, RandomState instance, default=None
|
||
|
Used when ``solver`` == 'sag' or 'saga' to shuffle the data.
|
||
|
See :term:`Glossary <random_state>` for details.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
coef_ : ndarray of shape (1, n_features) or (n_classes, n_features)
|
||
|
Coefficient of the features in the decision function.
|
||
|
|
||
|
``coef_`` is of shape (1, n_features) when the given problem is binary.
|
||
|
|
||
|
intercept_ : float or ndarray of shape (n_targets,)
|
||
|
Independent term in decision function. Set to 0.0 if
|
||
|
``fit_intercept = False``.
|
||
|
|
||
|
n_iter_ : None or ndarray of shape (n_targets,)
|
||
|
Actual number of iterations for each target. Available only for
|
||
|
sag and lsqr solvers. Other solvers will return None.
|
||
|
|
||
|
classes_ : ndarray of shape (n_classes,)
|
||
|
The classes labels.
|
||
|
|
||
|
n_features_in_ : int
|
||
|
Number of features seen during :term:`fit`.
|
||
|
|
||
|
.. versionadded:: 0.24
|
||
|
|
||
|
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
||
|
Names of features seen during :term:`fit`. Defined only when `X`
|
||
|
has feature names that are all strings.
|
||
|
|
||
|
.. versionadded:: 1.0
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
Ridge : Ridge regression.
|
||
|
RidgeClassifierCV : Ridge classifier with built-in cross validation.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For multi-class classification, n_class classifiers are trained in
|
||
|
a one-versus-all approach. Concretely, this is implemented by taking
|
||
|
advantage of the multi-variate response support in Ridge.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from sklearn.datasets import load_breast_cancer
|
||
|
>>> from sklearn.linear_model import RidgeClassifier
|
||
|
>>> X, y = load_breast_cancer(return_X_y=True)
|
||
|
>>> clf = RidgeClassifier().fit(X, y)
|
||
|
>>> clf.score(X, y)
|
||
|
0.9595...
|
||
|
"""
|
||
|
|
||
|
_parameter_constraints: dict = {
|
||
|
**_BaseRidge._parameter_constraints,
|
||
|
"class_weight": [dict, StrOptions({"balanced"}), None],
|
||
|
}
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
alpha=1.0,
|
||
|
*,
|
||
|
fit_intercept=True,
|
||
|
copy_X=True,
|
||
|
max_iter=None,
|
||
|
tol=1e-4,
|
||
|
class_weight=None,
|
||
|
solver="auto",
|
||
|
positive=False,
|
||
|
random_state=None,
|
||
|
):
|
||
|
super().__init__(
|
||
|
alpha=alpha,
|
||
|
fit_intercept=fit_intercept,
|
||
|
copy_X=copy_X,
|
||
|
max_iter=max_iter,
|
||
|
tol=tol,
|
||
|
solver=solver,
|
||
|
positive=positive,
|
||
|
random_state=random_state,
|
||
|
)
|
||
|
self.class_weight = class_weight
|
||
|
|
||
|
@_fit_context(prefer_skip_nested_validation=True)
|
||
|
def fit(self, X, y, sample_weight=None):
|
||
|
"""Fit Ridge classifier model.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {ndarray, sparse matrix} of shape (n_samples, n_features)
|
||
|
Training data.
|
||
|
|
||
|
y : ndarray of shape (n_samples,)
|
||
|
Target values.
|
||
|
|
||
|
sample_weight : float or ndarray of shape (n_samples,), default=None
|
||
|
Individual weights for each sample. If given a float, every sample
|
||
|
will have the same weight.
|
||
|
|
||
|
.. versionadded:: 0.17
|
||
|
*sample_weight* support to RidgeClassifier.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : object
|
||
|
Instance of the estimator.
|
||
|
"""
|
||
|
X, y, sample_weight, Y = self._prepare_data(X, y, sample_weight, self.solver)
|
||
|
|
||
|
super().fit(X, Y, sample_weight=sample_weight)
|
||
|
return self
|
||
|
|
||
|
|
||
|
def _check_gcv_mode(X, gcv_mode):
|
||
|
if gcv_mode in ["eigen", "svd"]:
|
||
|
return gcv_mode
|
||
|
# if X has more rows than columns, use decomposition of X^T.X,
|
||
|
# otherwise X.X^T
|
||
|
if X.shape[0] > X.shape[1]:
|
||
|
return "svd"
|
||
|
return "eigen"
|
||
|
|
||
|
|
||
|
def _find_smallest_angle(query, vectors):
|
||
|
"""Find the column of vectors that is most aligned with the query.
|
||
|
|
||
|
Both query and the columns of vectors must have their l2 norm equal to 1.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
query : ndarray of shape (n_samples,)
|
||
|
Normalized query vector.
|
||
|
|
||
|
vectors : ndarray of shape (n_samples, n_features)
|
||
|
Vectors to which we compare query, as columns. Must be normalized.
|
||
|
"""
|
||
|
abs_cosine = np.abs(query.dot(vectors))
|
||
|
index = np.argmax(abs_cosine)
|
||
|
return index
|
||
|
|
||
|
|
||
|
class _X_CenterStackOp(sparse.linalg.LinearOperator):
|
||
|
"""Behaves as centered and scaled X with an added intercept column.
|
||
|
|
||
|
This operator behaves as
|
||
|
np.hstack([X - sqrt_sw[:, None] * X_mean, sqrt_sw[:, None]])
|
||
|
"""
|
||
|
|
||
|
def __init__(self, X, X_mean, sqrt_sw):
|
||
|
n_samples, n_features = X.shape
|
||
|
super().__init__(X.dtype, (n_samples, n_features + 1))
|
||
|
self.X = X
|
||
|
self.X_mean = X_mean
|
||
|
self.sqrt_sw = sqrt_sw
|
||
|
|
||
|
def _matvec(self, v):
|
||
|
v = v.ravel()
|
||
|
return (
|
||
|
safe_sparse_dot(self.X, v[:-1], dense_output=True)
|
||
|
- self.sqrt_sw * self.X_mean.dot(v[:-1])
|
||
|
+ v[-1] * self.sqrt_sw
|
||
|
)
|
||
|
|
||
|
def _matmat(self, v):
|
||
|
return (
|
||
|
safe_sparse_dot(self.X, v[:-1], dense_output=True)
|
||
|
- self.sqrt_sw[:, None] * self.X_mean.dot(v[:-1])
|
||
|
+ v[-1] * self.sqrt_sw[:, None]
|
||
|
)
|
||
|
|
||
|
def _transpose(self):
|
||
|
return _XT_CenterStackOp(self.X, self.X_mean, self.sqrt_sw)
|
||
|
|
||
|
|
||
|
class _XT_CenterStackOp(sparse.linalg.LinearOperator):
|
||
|
"""Behaves as transposed centered and scaled X with an intercept column.
|
||
|
|
||
|
This operator behaves as
|
||
|
np.hstack([X - sqrt_sw[:, None] * X_mean, sqrt_sw[:, None]]).T
|
||
|
"""
|
||
|
|
||
|
def __init__(self, X, X_mean, sqrt_sw):
|
||
|
n_samples, n_features = X.shape
|
||
|
super().__init__(X.dtype, (n_features + 1, n_samples))
|
||
|
self.X = X
|
||
|
self.X_mean = X_mean
|
||
|
self.sqrt_sw = sqrt_sw
|
||
|
|
||
|
def _matvec(self, v):
|
||
|
v = v.ravel()
|
||
|
n_features = self.shape[0]
|
||
|
res = np.empty(n_features, dtype=self.X.dtype)
|
||
|
res[:-1] = safe_sparse_dot(self.X.T, v, dense_output=True) - (
|
||
|
self.X_mean * self.sqrt_sw.dot(v)
|
||
|
)
|
||
|
res[-1] = np.dot(v, self.sqrt_sw)
|
||
|
return res
|
||
|
|
||
|
def _matmat(self, v):
|
||
|
n_features = self.shape[0]
|
||
|
res = np.empty((n_features, v.shape[1]), dtype=self.X.dtype)
|
||
|
res[:-1] = safe_sparse_dot(self.X.T, v, dense_output=True) - self.X_mean[
|
||
|
:, None
|
||
|
] * self.sqrt_sw.dot(v)
|
||
|
res[-1] = np.dot(self.sqrt_sw, v)
|
||
|
return res
|
||
|
|
||
|
|
||
|
class _IdentityRegressor:
|
||
|
"""Fake regressor which will directly output the prediction."""
|
||
|
|
||
|
def decision_function(self, y_predict):
|
||
|
return y_predict
|
||
|
|
||
|
def predict(self, y_predict):
|
||
|
return y_predict
|
||
|
|
||
|
|
||
|
class _IdentityClassifier(LinearClassifierMixin):
|
||
|
"""Fake classifier which will directly output the prediction.
|
||
|
|
||
|
We inherit from LinearClassifierMixin to get the proper shape for the
|
||
|
output `y`.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, classes):
|
||
|
self.classes_ = classes
|
||
|
|
||
|
def decision_function(self, y_predict):
|
||
|
return y_predict
|
||
|
|
||
|
|
||
|
class _RidgeGCV(LinearModel):
|
||
|
"""Ridge regression with built-in Leave-one-out Cross-Validation.
|
||
|
|
||
|
This class is not intended to be used directly. Use RidgeCV instead.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
|
||
|
We want to solve (K + alpha*Id)c = y,
|
||
|
where K = X X^T is the kernel matrix.
|
||
|
|
||
|
Let G = (K + alpha*Id).
|
||
|
|
||
|
Dual solution: c = G^-1y
|
||
|
Primal solution: w = X^T c
|
||
|
|
||
|
Compute eigendecomposition K = Q V Q^T.
|
||
|
Then G^-1 = Q (V + alpha*Id)^-1 Q^T,
|
||
|
where (V + alpha*Id) is diagonal.
|
||
|
It is thus inexpensive to inverse for many alphas.
|
||
|
|
||
|
Let loov be the vector of prediction values for each example
|
||
|
when the model was fitted with all examples but this example.
|
||
|
|
||
|
loov = (KG^-1Y - diag(KG^-1)Y) / diag(I-KG^-1)
|
||
|
|
||
|
Let looe be the vector of prediction errors for each example
|
||
|
when the model was fitted with all examples but this example.
|
||
|
|
||
|
looe = y - loov = c / diag(G^-1)
|
||
|
|
||
|
The best score (negative mean squared error or user-provided scoring) is
|
||
|
stored in the `best_score_` attribute, and the selected hyperparameter in
|
||
|
`alpha_`.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
http://cbcl.mit.edu/publications/ps/MIT-CSAIL-TR-2007-025.pdf
|
||
|
https://www.mit.edu/~9.520/spring07/Classes/rlsslides.pdf
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
alphas=(0.1, 1.0, 10.0),
|
||
|
*,
|
||
|
fit_intercept=True,
|
||
|
scoring=None,
|
||
|
copy_X=True,
|
||
|
gcv_mode=None,
|
||
|
store_cv_values=False,
|
||
|
is_clf=False,
|
||
|
alpha_per_target=False,
|
||
|
):
|
||
|
self.alphas = alphas
|
||
|
self.fit_intercept = fit_intercept
|
||
|
self.scoring = scoring
|
||
|
self.copy_X = copy_X
|
||
|
self.gcv_mode = gcv_mode
|
||
|
self.store_cv_values = store_cv_values
|
||
|
self.is_clf = is_clf
|
||
|
self.alpha_per_target = alpha_per_target
|
||
|
|
||
|
@staticmethod
|
||
|
def _decomp_diag(v_prime, Q):
|
||
|
# compute diagonal of the matrix: dot(Q, dot(diag(v_prime), Q^T))
|
||
|
return (v_prime * Q**2).sum(axis=-1)
|
||
|
|
||
|
@staticmethod
|
||
|
def _diag_dot(D, B):
|
||
|
# compute dot(diag(D), B)
|
||
|
if len(B.shape) > 1:
|
||
|
# handle case where B is > 1-d
|
||
|
D = D[(slice(None),) + (np.newaxis,) * (len(B.shape) - 1)]
|
||
|
return D * B
|
||
|
|
||
|
def _compute_gram(self, X, sqrt_sw):
|
||
|
"""Computes the Gram matrix XX^T with possible centering.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {ndarray, sparse matrix} of shape (n_samples, n_features)
|
||
|
The preprocessed design matrix.
|
||
|
|
||
|
sqrt_sw : ndarray of shape (n_samples,)
|
||
|
square roots of sample weights
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
gram : ndarray of shape (n_samples, n_samples)
|
||
|
The Gram matrix.
|
||
|
X_mean : ndarray of shape (n_feature,)
|
||
|
The weighted mean of ``X`` for each feature.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
When X is dense the centering has been done in preprocessing
|
||
|
so the mean is 0 and we just compute XX^T.
|
||
|
|
||
|
When X is sparse it has not been centered in preprocessing, but it has
|
||
|
been scaled by sqrt(sample weights).
|
||
|
|
||
|
When self.fit_intercept is False no centering is done.
|
||
|
|
||
|
The centered X is never actually computed because centering would break
|
||
|
the sparsity of X.
|
||
|
"""
|
||
|
center = self.fit_intercept and sparse.issparse(X)
|
||
|
if not center:
|
||
|
# in this case centering has been done in preprocessing
|
||
|
# or we are not fitting an intercept.
|
||
|
X_mean = np.zeros(X.shape[1], dtype=X.dtype)
|
||
|
return safe_sparse_dot(X, X.T, dense_output=True), X_mean
|
||
|
# X is sparse
|
||
|
n_samples = X.shape[0]
|
||
|
sample_weight_matrix = sparse.dia_matrix(
|
||
|
(sqrt_sw, 0), shape=(n_samples, n_samples)
|
||
|
)
|
||
|
X_weighted = sample_weight_matrix.dot(X)
|
||
|
X_mean, _ = mean_variance_axis(X_weighted, axis=0)
|
||
|
X_mean *= n_samples / sqrt_sw.dot(sqrt_sw)
|
||
|
X_mX = sqrt_sw[:, None] * safe_sparse_dot(X_mean, X.T, dense_output=True)
|
||
|
X_mX_m = np.outer(sqrt_sw, sqrt_sw) * np.dot(X_mean, X_mean)
|
||
|
return (
|
||
|
safe_sparse_dot(X, X.T, dense_output=True) + X_mX_m - X_mX - X_mX.T,
|
||
|
X_mean,
|
||
|
)
|
||
|
|
||
|
def _compute_covariance(self, X, sqrt_sw):
|
||
|
"""Computes covariance matrix X^TX with possible centering.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : sparse matrix of shape (n_samples, n_features)
|
||
|
The preprocessed design matrix.
|
||
|
|
||
|
sqrt_sw : ndarray of shape (n_samples,)
|
||
|
square roots of sample weights
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
covariance : ndarray of shape (n_features, n_features)
|
||
|
The covariance matrix.
|
||
|
X_mean : ndarray of shape (n_feature,)
|
||
|
The weighted mean of ``X`` for each feature.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Since X is sparse it has not been centered in preprocessing, but it has
|
||
|
been scaled by sqrt(sample weights).
|
||
|
|
||
|
When self.fit_intercept is False no centering is done.
|
||
|
|
||
|
The centered X is never actually computed because centering would break
|
||
|
the sparsity of X.
|
||
|
"""
|
||
|
if not self.fit_intercept:
|
||
|
# in this case centering has been done in preprocessing
|
||
|
# or we are not fitting an intercept.
|
||
|
X_mean = np.zeros(X.shape[1], dtype=X.dtype)
|
||
|
return safe_sparse_dot(X.T, X, dense_output=True), X_mean
|
||
|
# this function only gets called for sparse X
|
||
|
n_samples = X.shape[0]
|
||
|
sample_weight_matrix = sparse.dia_matrix(
|
||
|
(sqrt_sw, 0), shape=(n_samples, n_samples)
|
||
|
)
|
||
|
X_weighted = sample_weight_matrix.dot(X)
|
||
|
X_mean, _ = mean_variance_axis(X_weighted, axis=0)
|
||
|
X_mean = X_mean * n_samples / sqrt_sw.dot(sqrt_sw)
|
||
|
weight_sum = sqrt_sw.dot(sqrt_sw)
|
||
|
return (
|
||
|
safe_sparse_dot(X.T, X, dense_output=True)
|
||
|
- weight_sum * np.outer(X_mean, X_mean),
|
||
|
X_mean,
|
||
|
)
|
||
|
|
||
|
def _sparse_multidot_diag(self, X, A, X_mean, sqrt_sw):
|
||
|
"""Compute the diagonal of (X - X_mean).dot(A).dot((X - X_mean).T)
|
||
|
without explicitly centering X nor computing X.dot(A)
|
||
|
when X is sparse.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : sparse matrix of shape (n_samples, n_features)
|
||
|
|
||
|
A : ndarray of shape (n_features, n_features)
|
||
|
|
||
|
X_mean : ndarray of shape (n_features,)
|
||
|
|
||
|
sqrt_sw : ndarray of shape (n_features,)
|
||
|
square roots of sample weights
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
diag : np.ndarray, shape (n_samples,)
|
||
|
The computed diagonal.
|
||
|
"""
|
||
|
intercept_col = scale = sqrt_sw
|
||
|
batch_size = X.shape[1]
|
||
|
diag = np.empty(X.shape[0], dtype=X.dtype)
|
||
|
for start in range(0, X.shape[0], batch_size):
|
||
|
batch = slice(start, min(X.shape[0], start + batch_size), 1)
|
||
|
X_batch = np.empty(
|
||
|
(X[batch].shape[0], X.shape[1] + self.fit_intercept), dtype=X.dtype
|
||
|
)
|
||
|
if self.fit_intercept:
|
||
|
X_batch[:, :-1] = X[batch].toarray() - X_mean * scale[batch][:, None]
|
||
|
X_batch[:, -1] = intercept_col[batch]
|
||
|
else:
|
||
|
X_batch = X[batch].toarray()
|
||
|
diag[batch] = (X_batch.dot(A) * X_batch).sum(axis=1)
|
||
|
return diag
|
||
|
|
||
|
def _eigen_decompose_gram(self, X, y, sqrt_sw):
|
||
|
"""Eigendecomposition of X.X^T, used when n_samples <= n_features."""
|
||
|
# if X is dense it has already been centered in preprocessing
|
||
|
K, X_mean = self._compute_gram(X, sqrt_sw)
|
||
|
if self.fit_intercept:
|
||
|
# to emulate centering X with sample weights,
|
||
|
# ie removing the weighted average, we add a column
|
||
|
# containing the square roots of the sample weights.
|
||
|
# by centering, it is orthogonal to the other columns
|
||
|
K += np.outer(sqrt_sw, sqrt_sw)
|
||
|
eigvals, Q = linalg.eigh(K)
|
||
|
QT_y = np.dot(Q.T, y)
|
||
|
return X_mean, eigvals, Q, QT_y
|
||
|
|
||
|
def _solve_eigen_gram(self, alpha, y, sqrt_sw, X_mean, eigvals, Q, QT_y):
|
||
|
"""Compute dual coefficients and diagonal of G^-1.
|
||
|
|
||
|
Used when we have a decomposition of X.X^T (n_samples <= n_features).
|
||
|
"""
|
||
|
w = 1.0 / (eigvals + alpha)
|
||
|
if self.fit_intercept:
|
||
|
# the vector containing the square roots of the sample weights (1
|
||
|
# when no sample weights) is the eigenvector of XX^T which
|
||
|
# corresponds to the intercept; we cancel the regularization on
|
||
|
# this dimension. the corresponding eigenvalue is
|
||
|
# sum(sample_weight).
|
||
|
normalized_sw = sqrt_sw / np.linalg.norm(sqrt_sw)
|
||
|
intercept_dim = _find_smallest_angle(normalized_sw, Q)
|
||
|
w[intercept_dim] = 0 # cancel regularization for the intercept
|
||
|
|
||
|
c = np.dot(Q, self._diag_dot(w, QT_y))
|
||
|
G_inverse_diag = self._decomp_diag(w, Q)
|
||
|
# handle case where y is 2-d
|
||
|
if len(y.shape) != 1:
|
||
|
G_inverse_diag = G_inverse_diag[:, np.newaxis]
|
||
|
return G_inverse_diag, c
|
||
|
|
||
|
def _eigen_decompose_covariance(self, X, y, sqrt_sw):
|
||
|
"""Eigendecomposition of X^T.X, used when n_samples > n_features
|
||
|
and X is sparse.
|
||
|
"""
|
||
|
n_samples, n_features = X.shape
|
||
|
cov = np.empty((n_features + 1, n_features + 1), dtype=X.dtype)
|
||
|
cov[:-1, :-1], X_mean = self._compute_covariance(X, sqrt_sw)
|
||
|
if not self.fit_intercept:
|
||
|
cov = cov[:-1, :-1]
|
||
|
# to emulate centering X with sample weights,
|
||
|
# ie removing the weighted average, we add a column
|
||
|
# containing the square roots of the sample weights.
|
||
|
# by centering, it is orthogonal to the other columns
|
||
|
# when all samples have the same weight we add a column of 1
|
||
|
else:
|
||
|
cov[-1] = 0
|
||
|
cov[:, -1] = 0
|
||
|
cov[-1, -1] = sqrt_sw.dot(sqrt_sw)
|
||
|
nullspace_dim = max(0, n_features - n_samples)
|
||
|
eigvals, V = linalg.eigh(cov)
|
||
|
# remove eigenvalues and vectors in the null space of X^T.X
|
||
|
eigvals = eigvals[nullspace_dim:]
|
||
|
V = V[:, nullspace_dim:]
|
||
|
return X_mean, eigvals, V, X
|
||
|
|
||
|
def _solve_eigen_covariance_no_intercept(
|
||
|
self, alpha, y, sqrt_sw, X_mean, eigvals, V, X
|
||
|
):
|
||
|
"""Compute dual coefficients and diagonal of G^-1.
|
||
|
|
||
|
Used when we have a decomposition of X^T.X
|
||
|
(n_samples > n_features and X is sparse), and not fitting an intercept.
|
||
|
"""
|
||
|
w = 1 / (eigvals + alpha)
|
||
|
A = (V * w).dot(V.T)
|
||
|
AXy = A.dot(safe_sparse_dot(X.T, y, dense_output=True))
|
||
|
y_hat = safe_sparse_dot(X, AXy, dense_output=True)
|
||
|
hat_diag = self._sparse_multidot_diag(X, A, X_mean, sqrt_sw)
|
||
|
if len(y.shape) != 1:
|
||
|
# handle case where y is 2-d
|
||
|
hat_diag = hat_diag[:, np.newaxis]
|
||
|
return (1 - hat_diag) / alpha, (y - y_hat) / alpha
|
||
|
|
||
|
def _solve_eigen_covariance_intercept(
|
||
|
self, alpha, y, sqrt_sw, X_mean, eigvals, V, X
|
||
|
):
|
||
|
"""Compute dual coefficients and diagonal of G^-1.
|
||
|
|
||
|
Used when we have a decomposition of X^T.X
|
||
|
(n_samples > n_features and X is sparse),
|
||
|
and we are fitting an intercept.
|
||
|
"""
|
||
|
# the vector [0, 0, ..., 0, 1]
|
||
|
# is the eigenvector of X^TX which
|
||
|
# corresponds to the intercept; we cancel the regularization on
|
||
|
# this dimension. the corresponding eigenvalue is
|
||
|
# sum(sample_weight), e.g. n when uniform sample weights.
|
||
|
intercept_sv = np.zeros(V.shape[0])
|
||
|
intercept_sv[-1] = 1
|
||
|
intercept_dim = _find_smallest_angle(intercept_sv, V)
|
||
|
w = 1 / (eigvals + alpha)
|
||
|
w[intercept_dim] = 1 / eigvals[intercept_dim]
|
||
|
A = (V * w).dot(V.T)
|
||
|
# add a column to X containing the square roots of sample weights
|
||
|
X_op = _X_CenterStackOp(X, X_mean, sqrt_sw)
|
||
|
AXy = A.dot(X_op.T.dot(y))
|
||
|
y_hat = X_op.dot(AXy)
|
||
|
hat_diag = self._sparse_multidot_diag(X, A, X_mean, sqrt_sw)
|
||
|
# return (1 - hat_diag), (y - y_hat)
|
||
|
if len(y.shape) != 1:
|
||
|
# handle case where y is 2-d
|
||
|
hat_diag = hat_diag[:, np.newaxis]
|
||
|
return (1 - hat_diag) / alpha, (y - y_hat) / alpha
|
||
|
|
||
|
def _solve_eigen_covariance(self, alpha, y, sqrt_sw, X_mean, eigvals, V, X):
|
||
|
"""Compute dual coefficients and diagonal of G^-1.
|
||
|
|
||
|
Used when we have a decomposition of X^T.X
|
||
|
(n_samples > n_features and X is sparse).
|
||
|
"""
|
||
|
if self.fit_intercept:
|
||
|
return self._solve_eigen_covariance_intercept(
|
||
|
alpha, y, sqrt_sw, X_mean, eigvals, V, X
|
||
|
)
|
||
|
return self._solve_eigen_covariance_no_intercept(
|
||
|
alpha, y, sqrt_sw, X_mean, eigvals, V, X
|
||
|
)
|
||
|
|
||
|
def _svd_decompose_design_matrix(self, X, y, sqrt_sw):
|
||
|
# X already centered
|
||
|
X_mean = np.zeros(X.shape[1], dtype=X.dtype)
|
||
|
if self.fit_intercept:
|
||
|
# to emulate fit_intercept=True situation, add a column
|
||
|
# containing the square roots of the sample weights
|
||
|
# by centering, the other columns are orthogonal to that one
|
||
|
intercept_column = sqrt_sw[:, None]
|
||
|
X = np.hstack((X, intercept_column))
|
||
|
U, singvals, _ = linalg.svd(X, full_matrices=0)
|
||
|
singvals_sq = singvals**2
|
||
|
UT_y = np.dot(U.T, y)
|
||
|
return X_mean, singvals_sq, U, UT_y
|
||
|
|
||
|
def _solve_svd_design_matrix(self, alpha, y, sqrt_sw, X_mean, singvals_sq, U, UT_y):
|
||
|
"""Compute dual coefficients and diagonal of G^-1.
|
||
|
|
||
|
Used when we have an SVD decomposition of X
|
||
|
(n_samples > n_features and X is dense).
|
||
|
"""
|
||
|
w = ((singvals_sq + alpha) ** -1) - (alpha**-1)
|
||
|
if self.fit_intercept:
|
||
|
# detect intercept column
|
||
|
normalized_sw = sqrt_sw / np.linalg.norm(sqrt_sw)
|
||
|
intercept_dim = _find_smallest_angle(normalized_sw, U)
|
||
|
# cancel the regularization for the intercept
|
||
|
w[intercept_dim] = -(alpha**-1)
|
||
|
c = np.dot(U, self._diag_dot(w, UT_y)) + (alpha**-1) * y
|
||
|
G_inverse_diag = self._decomp_diag(w, U) + (alpha**-1)
|
||
|
if len(y.shape) != 1:
|
||
|
# handle case where y is 2-d
|
||
|
G_inverse_diag = G_inverse_diag[:, np.newaxis]
|
||
|
return G_inverse_diag, c
|
||
|
|
||
|
def fit(self, X, y, sample_weight=None):
|
||
|
"""Fit Ridge regression model with gcv.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {ndarray, sparse matrix} of shape (n_samples, n_features)
|
||
|
Training data. Will be cast to float64 if necessary.
|
||
|
|
||
|
y : ndarray of shape (n_samples,) or (n_samples, n_targets)
|
||
|
Target values. Will be cast to float64 if necessary.
|
||
|
|
||
|
sample_weight : float or ndarray of shape (n_samples,), default=None
|
||
|
Individual weights for each sample. If given a float, every sample
|
||
|
will have the same weight. Note that the scale of `sample_weight`
|
||
|
has an impact on the loss; i.e. multiplying all weights by `k`
|
||
|
is equivalent to setting `alpha / k`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : object
|
||
|
"""
|
||
|
X, y = self._validate_data(
|
||
|
X,
|
||
|
y,
|
||
|
accept_sparse=["csr", "csc", "coo"],
|
||
|
dtype=[np.float64],
|
||
|
multi_output=True,
|
||
|
y_numeric=True,
|
||
|
)
|
||
|
|
||
|
# alpha_per_target cannot be used in classifier mode. All subclasses
|
||
|
# of _RidgeGCV that are classifiers keep alpha_per_target at its
|
||
|
# default value: False, so the condition below should never happen.
|
||
|
assert not (self.is_clf and self.alpha_per_target)
|
||
|
|
||
|
if sample_weight is not None:
|
||
|
sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)
|
||
|
|
||
|
self.alphas = np.asarray(self.alphas)
|
||
|
|
||
|
X, y, X_offset, y_offset, X_scale = _preprocess_data(
|
||
|
X,
|
||
|
y,
|
||
|
fit_intercept=self.fit_intercept,
|
||
|
copy=self.copy_X,
|
||
|
sample_weight=sample_weight,
|
||
|
)
|
||
|
|
||
|
gcv_mode = _check_gcv_mode(X, self.gcv_mode)
|
||
|
|
||
|
if gcv_mode == "eigen":
|
||
|
decompose = self._eigen_decompose_gram
|
||
|
solve = self._solve_eigen_gram
|
||
|
elif gcv_mode == "svd":
|
||
|
if sparse.issparse(X):
|
||
|
decompose = self._eigen_decompose_covariance
|
||
|
solve = self._solve_eigen_covariance
|
||
|
else:
|
||
|
decompose = self._svd_decompose_design_matrix
|
||
|
solve = self._solve_svd_design_matrix
|
||
|
|
||
|
n_samples = X.shape[0]
|
||
|
|
||
|
if sample_weight is not None:
|
||
|
X, y, sqrt_sw = _rescale_data(X, y, sample_weight)
|
||
|
else:
|
||
|
sqrt_sw = np.ones(n_samples, dtype=X.dtype)
|
||
|
|
||
|
X_mean, *decomposition = decompose(X, y, sqrt_sw)
|
||
|
|
||
|
scorer = check_scoring(self, scoring=self.scoring, allow_none=True)
|
||
|
error = scorer is None
|
||
|
|
||
|
n_y = 1 if len(y.shape) == 1 else y.shape[1]
|
||
|
n_alphas = 1 if np.ndim(self.alphas) == 0 else len(self.alphas)
|
||
|
|
||
|
if self.store_cv_values:
|
||
|
self.cv_values_ = np.empty((n_samples * n_y, n_alphas), dtype=X.dtype)
|
||
|
|
||
|
best_coef, best_score, best_alpha = None, None, None
|
||
|
|
||
|
for i, alpha in enumerate(np.atleast_1d(self.alphas)):
|
||
|
G_inverse_diag, c = solve(float(alpha), y, sqrt_sw, X_mean, *decomposition)
|
||
|
if error:
|
||
|
squared_errors = (c / G_inverse_diag) ** 2
|
||
|
if self.alpha_per_target:
|
||
|
alpha_score = -squared_errors.mean(axis=0)
|
||
|
else:
|
||
|
alpha_score = -squared_errors.mean()
|
||
|
if self.store_cv_values:
|
||
|
self.cv_values_[:, i] = squared_errors.ravel()
|
||
|
else:
|
||
|
predictions = y - (c / G_inverse_diag)
|
||
|
if self.store_cv_values:
|
||
|
self.cv_values_[:, i] = predictions.ravel()
|
||
|
|
||
|
if self.is_clf:
|
||
|
identity_estimator = _IdentityClassifier(classes=np.arange(n_y))
|
||
|
alpha_score = scorer(
|
||
|
identity_estimator, predictions, y.argmax(axis=1)
|
||
|
)
|
||
|
else:
|
||
|
identity_estimator = _IdentityRegressor()
|
||
|
if self.alpha_per_target:
|
||
|
alpha_score = np.array(
|
||
|
[
|
||
|
scorer(identity_estimator, predictions[:, j], y[:, j])
|
||
|
for j in range(n_y)
|
||
|
]
|
||
|
)
|
||
|
else:
|
||
|
alpha_score = scorer(
|
||
|
identity_estimator, predictions.ravel(), y.ravel()
|
||
|
)
|
||
|
|
||
|
# Keep track of the best model
|
||
|
if best_score is None:
|
||
|
# initialize
|
||
|
if self.alpha_per_target and n_y > 1:
|
||
|
best_coef = c
|
||
|
best_score = np.atleast_1d(alpha_score)
|
||
|
best_alpha = np.full(n_y, alpha)
|
||
|
else:
|
||
|
best_coef = c
|
||
|
best_score = alpha_score
|
||
|
best_alpha = alpha
|
||
|
else:
|
||
|
# update
|
||
|
if self.alpha_per_target and n_y > 1:
|
||
|
to_update = alpha_score > best_score
|
||
|
best_coef[:, to_update] = c[:, to_update]
|
||
|
best_score[to_update] = alpha_score[to_update]
|
||
|
best_alpha[to_update] = alpha
|
||
|
elif alpha_score > best_score:
|
||
|
best_coef, best_score, best_alpha = c, alpha_score, alpha
|
||
|
|
||
|
self.alpha_ = best_alpha
|
||
|
self.best_score_ = best_score
|
||
|
self.dual_coef_ = best_coef
|
||
|
self.coef_ = safe_sparse_dot(self.dual_coef_.T, X)
|
||
|
|
||
|
if sparse.issparse(X):
|
||
|
X_offset = X_mean * X_scale
|
||
|
else:
|
||
|
X_offset += X_mean * X_scale
|
||
|
self._set_intercept(X_offset, y_offset, X_scale)
|
||
|
|
||
|
if self.store_cv_values:
|
||
|
if len(y.shape) == 1:
|
||
|
cv_values_shape = n_samples, n_alphas
|
||
|
else:
|
||
|
cv_values_shape = n_samples, n_y, n_alphas
|
||
|
self.cv_values_ = self.cv_values_.reshape(cv_values_shape)
|
||
|
|
||
|
return self
|
||
|
|
||
|
|
||
|
class _BaseRidgeCV(LinearModel):
|
||
|
_parameter_constraints: dict = {
|
||
|
"alphas": ["array-like", Interval(Real, 0, None, closed="neither")],
|
||
|
"fit_intercept": ["boolean"],
|
||
|
"scoring": [StrOptions(set(get_scorer_names())), callable, None],
|
||
|
"cv": ["cv_object"],
|
||
|
"gcv_mode": [StrOptions({"auto", "svd", "eigen"}), None],
|
||
|
"store_cv_values": ["boolean"],
|
||
|
"alpha_per_target": ["boolean"],
|
||
|
}
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
alphas=(0.1, 1.0, 10.0),
|
||
|
*,
|
||
|
fit_intercept=True,
|
||
|
scoring=None,
|
||
|
cv=None,
|
||
|
gcv_mode=None,
|
||
|
store_cv_values=False,
|
||
|
alpha_per_target=False,
|
||
|
):
|
||
|
self.alphas = alphas
|
||
|
self.fit_intercept = fit_intercept
|
||
|
self.scoring = scoring
|
||
|
self.cv = cv
|
||
|
self.gcv_mode = gcv_mode
|
||
|
self.store_cv_values = store_cv_values
|
||
|
self.alpha_per_target = alpha_per_target
|
||
|
|
||
|
def fit(self, X, y, sample_weight=None):
|
||
|
"""Fit Ridge regression model with cv.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : ndarray of shape (n_samples, n_features)
|
||
|
Training data. If using GCV, will be cast to float64
|
||
|
if necessary.
|
||
|
|
||
|
y : ndarray of shape (n_samples,) or (n_samples, n_targets)
|
||
|
Target values. Will be cast to X's dtype if necessary.
|
||
|
|
||
|
sample_weight : float or ndarray of shape (n_samples,), default=None
|
||
|
Individual weights for each sample. If given a float, every sample
|
||
|
will have the same weight.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : object
|
||
|
Fitted estimator.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
When sample_weight is provided, the selected hyperparameter may depend
|
||
|
on whether we use leave-one-out cross-validation (cv=None or cv='auto')
|
||
|
or another form of cross-validation, because only leave-one-out
|
||
|
cross-validation takes the sample weights into account when computing
|
||
|
the validation score.
|
||
|
"""
|
||
|
cv = self.cv
|
||
|
|
||
|
check_scalar_alpha = partial(
|
||
|
check_scalar,
|
||
|
target_type=numbers.Real,
|
||
|
min_val=0.0,
|
||
|
include_boundaries="neither",
|
||
|
)
|
||
|
|
||
|
if isinstance(self.alphas, (np.ndarray, list, tuple)):
|
||
|
n_alphas = 1 if np.ndim(self.alphas) == 0 else len(self.alphas)
|
||
|
if n_alphas != 1:
|
||
|
for index, alpha in enumerate(self.alphas):
|
||
|
alpha = check_scalar_alpha(alpha, f"alphas[{index}]")
|
||
|
else:
|
||
|
self.alphas[0] = check_scalar_alpha(self.alphas[0], "alphas")
|
||
|
alphas = np.asarray(self.alphas)
|
||
|
|
||
|
if cv is None:
|
||
|
estimator = _RidgeGCV(
|
||
|
alphas,
|
||
|
fit_intercept=self.fit_intercept,
|
||
|
scoring=self.scoring,
|
||
|
gcv_mode=self.gcv_mode,
|
||
|
store_cv_values=self.store_cv_values,
|
||
|
is_clf=is_classifier(self),
|
||
|
alpha_per_target=self.alpha_per_target,
|
||
|
)
|
||
|
estimator.fit(X, y, sample_weight=sample_weight)
|
||
|
self.alpha_ = estimator.alpha_
|
||
|
self.best_score_ = estimator.best_score_
|
||
|
if self.store_cv_values:
|
||
|
self.cv_values_ = estimator.cv_values_
|
||
|
else:
|
||
|
if self.store_cv_values:
|
||
|
raise ValueError("cv!=None and store_cv_values=True are incompatible")
|
||
|
if self.alpha_per_target:
|
||
|
raise ValueError("cv!=None and alpha_per_target=True are incompatible")
|
||
|
|
||
|
parameters = {"alpha": alphas}
|
||
|
solver = "sparse_cg" if sparse.issparse(X) else "auto"
|
||
|
model = RidgeClassifier if is_classifier(self) else Ridge
|
||
|
gs = GridSearchCV(
|
||
|
model(
|
||
|
fit_intercept=self.fit_intercept,
|
||
|
solver=solver,
|
||
|
),
|
||
|
parameters,
|
||
|
cv=cv,
|
||
|
scoring=self.scoring,
|
||
|
)
|
||
|
gs.fit(X, y, sample_weight=sample_weight)
|
||
|
estimator = gs.best_estimator_
|
||
|
self.alpha_ = gs.best_estimator_.alpha
|
||
|
self.best_score_ = gs.best_score_
|
||
|
|
||
|
self.coef_ = estimator.coef_
|
||
|
self.intercept_ = estimator.intercept_
|
||
|
self.n_features_in_ = estimator.n_features_in_
|
||
|
if hasattr(estimator, "feature_names_in_"):
|
||
|
self.feature_names_in_ = estimator.feature_names_in_
|
||
|
|
||
|
return self
|
||
|
|
||
|
|
||
|
class RidgeCV(
|
||
|
_RoutingNotSupportedMixin, MultiOutputMixin, RegressorMixin, _BaseRidgeCV
|
||
|
):
|
||
|
"""Ridge regression with built-in cross-validation.
|
||
|
|
||
|
See glossary entry for :term:`cross-validation estimator`.
|
||
|
|
||
|
By default, it performs efficient Leave-One-Out Cross-Validation.
|
||
|
|
||
|
Read more in the :ref:`User Guide <ridge_regression>`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
alphas : array-like of shape (n_alphas,), default=(0.1, 1.0, 10.0)
|
||
|
Array of alpha values to try.
|
||
|
Regularization strength; must be a positive float. Regularization
|
||
|
improves the conditioning of the problem and reduces the variance of
|
||
|
the estimates. Larger values specify stronger regularization.
|
||
|
Alpha corresponds to ``1 / (2C)`` in other linear models such as
|
||
|
:class:`~sklearn.linear_model.LogisticRegression` or
|
||
|
:class:`~sklearn.svm.LinearSVC`.
|
||
|
If using Leave-One-Out cross-validation, alphas must be positive.
|
||
|
|
||
|
fit_intercept : bool, default=True
|
||
|
Whether to calculate the intercept for this model. If set
|
||
|
to false, no intercept will be used in calculations
|
||
|
(i.e. data is expected to be centered).
|
||
|
|
||
|
scoring : str, callable, default=None
|
||
|
A string (see model evaluation documentation) or
|
||
|
a scorer callable object / function with signature
|
||
|
``scorer(estimator, X, y)``.
|
||
|
If None, the negative mean squared error if cv is 'auto' or None
|
||
|
(i.e. when using leave-one-out cross-validation), and r2 score
|
||
|
otherwise.
|
||
|
|
||
|
cv : int, cross-validation generator or an iterable, default=None
|
||
|
Determines the cross-validation splitting strategy.
|
||
|
Possible inputs for cv are:
|
||
|
|
||
|
- None, to use the efficient Leave-One-Out cross-validation
|
||
|
- integer, to specify the number of folds.
|
||
|
- :term:`CV splitter`,
|
||
|
- An iterable yielding (train, test) splits as arrays of indices.
|
||
|
|
||
|
For integer/None inputs, if ``y`` is binary or multiclass,
|
||
|
:class:`~sklearn.model_selection.StratifiedKFold` is used, else,
|
||
|
:class:`~sklearn.model_selection.KFold` is used.
|
||
|
|
||
|
Refer :ref:`User Guide <cross_validation>` for the various
|
||
|
cross-validation strategies that can be used here.
|
||
|
|
||
|
gcv_mode : {'auto', 'svd', 'eigen'}, default='auto'
|
||
|
Flag indicating which strategy to use when performing
|
||
|
Leave-One-Out Cross-Validation. Options are::
|
||
|
|
||
|
'auto' : use 'svd' if n_samples > n_features, otherwise use 'eigen'
|
||
|
'svd' : force use of singular value decomposition of X when X is
|
||
|
dense, eigenvalue decomposition of X^T.X when X is sparse.
|
||
|
'eigen' : force computation via eigendecomposition of X.X^T
|
||
|
|
||
|
The 'auto' mode is the default and is intended to pick the cheaper
|
||
|
option of the two depending on the shape of the training data.
|
||
|
|
||
|
store_cv_values : bool, default=False
|
||
|
Flag indicating if the cross-validation values corresponding to
|
||
|
each alpha should be stored in the ``cv_values_`` attribute (see
|
||
|
below). This flag is only compatible with ``cv=None`` (i.e. using
|
||
|
Leave-One-Out Cross-Validation).
|
||
|
|
||
|
alpha_per_target : bool, default=False
|
||
|
Flag indicating whether to optimize the alpha value (picked from the
|
||
|
`alphas` parameter list) for each target separately (for multi-output
|
||
|
settings: multiple prediction targets). When set to `True`, after
|
||
|
fitting, the `alpha_` attribute will contain a value for each target.
|
||
|
When set to `False`, a single alpha is used for all targets.
|
||
|
|
||
|
.. versionadded:: 0.24
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
cv_values_ : ndarray of shape (n_samples, n_alphas) or \
|
||
|
shape (n_samples, n_targets, n_alphas), optional
|
||
|
Cross-validation values for each alpha (only available if
|
||
|
``store_cv_values=True`` and ``cv=None``). After ``fit()`` has been
|
||
|
called, this attribute will contain the mean squared errors if
|
||
|
`scoring is None` otherwise it will contain standardized per point
|
||
|
prediction values.
|
||
|
|
||
|
coef_ : ndarray of shape (n_features) or (n_targets, n_features)
|
||
|
Weight vector(s).
|
||
|
|
||
|
intercept_ : float or ndarray of shape (n_targets,)
|
||
|
Independent term in decision function. Set to 0.0 if
|
||
|
``fit_intercept = False``.
|
||
|
|
||
|
alpha_ : float or ndarray of shape (n_targets,)
|
||
|
Estimated regularization parameter, or, if ``alpha_per_target=True``,
|
||
|
the estimated regularization parameter for each target.
|
||
|
|
||
|
best_score_ : float or ndarray of shape (n_targets,)
|
||
|
Score of base estimator with best alpha, or, if
|
||
|
``alpha_per_target=True``, a score for each target.
|
||
|
|
||
|
.. versionadded:: 0.23
|
||
|
|
||
|
n_features_in_ : int
|
||
|
Number of features seen during :term:`fit`.
|
||
|
|
||
|
.. versionadded:: 0.24
|
||
|
|
||
|
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
||
|
Names of features seen during :term:`fit`. Defined only when `X`
|
||
|
has feature names that are all strings.
|
||
|
|
||
|
.. versionadded:: 1.0
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
Ridge : Ridge regression.
|
||
|
RidgeClassifier : Classifier based on ridge regression on {-1, 1} labels.
|
||
|
RidgeClassifierCV : Ridge classifier with built-in cross validation.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from sklearn.datasets import load_diabetes
|
||
|
>>> from sklearn.linear_model import RidgeCV
|
||
|
>>> X, y = load_diabetes(return_X_y=True)
|
||
|
>>> clf = RidgeCV(alphas=[1e-3, 1e-2, 1e-1, 1]).fit(X, y)
|
||
|
>>> clf.score(X, y)
|
||
|
0.5166...
|
||
|
"""
|
||
|
|
||
|
@_fit_context(prefer_skip_nested_validation=True)
|
||
|
def fit(self, X, y, sample_weight=None):
|
||
|
"""Fit Ridge regression model with cv.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : ndarray of shape (n_samples, n_features)
|
||
|
Training data. If using GCV, will be cast to float64
|
||
|
if necessary.
|
||
|
|
||
|
y : ndarray of shape (n_samples,) or (n_samples, n_targets)
|
||
|
Target values. Will be cast to X's dtype if necessary.
|
||
|
|
||
|
sample_weight : float or ndarray of shape (n_samples,), default=None
|
||
|
Individual weights for each sample. If given a float, every sample
|
||
|
will have the same weight.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : object
|
||
|
Fitted estimator.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
When sample_weight is provided, the selected hyperparameter may depend
|
||
|
on whether we use leave-one-out cross-validation (cv=None or cv='auto')
|
||
|
or another form of cross-validation, because only leave-one-out
|
||
|
cross-validation takes the sample weights into account when computing
|
||
|
the validation score.
|
||
|
"""
|
||
|
_raise_for_unsupported_routing(self, "fit", sample_weight=sample_weight)
|
||
|
super().fit(X, y, sample_weight=sample_weight)
|
||
|
return self
|
||
|
|
||
|
|
||
|
class RidgeClassifierCV(_RoutingNotSupportedMixin, _RidgeClassifierMixin, _BaseRidgeCV):
|
||
|
"""Ridge classifier with built-in cross-validation.
|
||
|
|
||
|
See glossary entry for :term:`cross-validation estimator`.
|
||
|
|
||
|
By default, it performs Leave-One-Out Cross-Validation. Currently,
|
||
|
only the n_features > n_samples case is handled efficiently.
|
||
|
|
||
|
Read more in the :ref:`User Guide <ridge_regression>`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
alphas : array-like of shape (n_alphas,), default=(0.1, 1.0, 10.0)
|
||
|
Array of alpha values to try.
|
||
|
Regularization strength; must be a positive float. Regularization
|
||
|
improves the conditioning of the problem and reduces the variance of
|
||
|
the estimates. Larger values specify stronger regularization.
|
||
|
Alpha corresponds to ``1 / (2C)`` in other linear models such as
|
||
|
:class:`~sklearn.linear_model.LogisticRegression` or
|
||
|
:class:`~sklearn.svm.LinearSVC`.
|
||
|
|
||
|
fit_intercept : bool, default=True
|
||
|
Whether to calculate the intercept for this model. If set
|
||
|
to false, no intercept will be used in calculations
|
||
|
(i.e. data is expected to be centered).
|
||
|
|
||
|
scoring : str, callable, default=None
|
||
|
A string (see model evaluation documentation) or
|
||
|
a scorer callable object / function with signature
|
||
|
``scorer(estimator, X, y)``.
|
||
|
|
||
|
cv : int, cross-validation generator or an iterable, default=None
|
||
|
Determines the cross-validation splitting strategy.
|
||
|
Possible inputs for cv are:
|
||
|
|
||
|
- None, to use the efficient Leave-One-Out cross-validation
|
||
|
- integer, to specify the number of folds.
|
||
|
- :term:`CV splitter`,
|
||
|
- An iterable yielding (train, test) splits as arrays of indices.
|
||
|
|
||
|
Refer :ref:`User Guide <cross_validation>` for the various
|
||
|
cross-validation strategies that can be used here.
|
||
|
|
||
|
class_weight : dict or 'balanced', default=None
|
||
|
Weights associated with classes in the form ``{class_label: weight}``.
|
||
|
If not given, all classes are supposed to have weight one.
|
||
|
|
||
|
The "balanced" mode uses the values of y to automatically adjust
|
||
|
weights inversely proportional to class frequencies in the input data
|
||
|
as ``n_samples / (n_classes * np.bincount(y))``.
|
||
|
|
||
|
store_cv_values : bool, default=False
|
||
|
Flag indicating if the cross-validation values corresponding to
|
||
|
each alpha should be stored in the ``cv_values_`` attribute (see
|
||
|
below). This flag is only compatible with ``cv=None`` (i.e. using
|
||
|
Leave-One-Out Cross-Validation).
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
cv_values_ : ndarray of shape (n_samples, n_targets, n_alphas), optional
|
||
|
Cross-validation values for each alpha (only if ``store_cv_values=True`` and
|
||
|
``cv=None``). After ``fit()`` has been called, this attribute will
|
||
|
contain the mean squared errors if `scoring is None` otherwise it
|
||
|
will contain standardized per point prediction values.
|
||
|
|
||
|
coef_ : ndarray of shape (1, n_features) or (n_targets, n_features)
|
||
|
Coefficient of the features in the decision function.
|
||
|
|
||
|
``coef_`` is of shape (1, n_features) when the given problem is binary.
|
||
|
|
||
|
intercept_ : float or ndarray of shape (n_targets,)
|
||
|
Independent term in decision function. Set to 0.0 if
|
||
|
``fit_intercept = False``.
|
||
|
|
||
|
alpha_ : float
|
||
|
Estimated regularization parameter.
|
||
|
|
||
|
best_score_ : float
|
||
|
Score of base estimator with best alpha.
|
||
|
|
||
|
.. versionadded:: 0.23
|
||
|
|
||
|
classes_ : ndarray of shape (n_classes,)
|
||
|
The classes labels.
|
||
|
|
||
|
n_features_in_ : int
|
||
|
Number of features seen during :term:`fit`.
|
||
|
|
||
|
.. versionadded:: 0.24
|
||
|
|
||
|
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
||
|
Names of features seen during :term:`fit`. Defined only when `X`
|
||
|
has feature names that are all strings.
|
||
|
|
||
|
.. versionadded:: 1.0
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
Ridge : Ridge regression.
|
||
|
RidgeClassifier : Ridge classifier.
|
||
|
RidgeCV : Ridge regression with built-in cross validation.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For multi-class classification, n_class classifiers are trained in
|
||
|
a one-versus-all approach. Concretely, this is implemented by taking
|
||
|
advantage of the multi-variate response support in Ridge.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from sklearn.datasets import load_breast_cancer
|
||
|
>>> from sklearn.linear_model import RidgeClassifierCV
|
||
|
>>> X, y = load_breast_cancer(return_X_y=True)
|
||
|
>>> clf = RidgeClassifierCV(alphas=[1e-3, 1e-2, 1e-1, 1]).fit(X, y)
|
||
|
>>> clf.score(X, y)
|
||
|
0.9630...
|
||
|
"""
|
||
|
|
||
|
_parameter_constraints: dict = {
|
||
|
**_BaseRidgeCV._parameter_constraints,
|
||
|
"class_weight": [dict, StrOptions({"balanced"}), None],
|
||
|
}
|
||
|
for param in ("gcv_mode", "alpha_per_target"):
|
||
|
_parameter_constraints.pop(param)
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
alphas=(0.1, 1.0, 10.0),
|
||
|
*,
|
||
|
fit_intercept=True,
|
||
|
scoring=None,
|
||
|
cv=None,
|
||
|
class_weight=None,
|
||
|
store_cv_values=False,
|
||
|
):
|
||
|
super().__init__(
|
||
|
alphas=alphas,
|
||
|
fit_intercept=fit_intercept,
|
||
|
scoring=scoring,
|
||
|
cv=cv,
|
||
|
store_cv_values=store_cv_values,
|
||
|
)
|
||
|
self.class_weight = class_weight
|
||
|
|
||
|
@_fit_context(prefer_skip_nested_validation=True)
|
||
|
def fit(self, X, y, sample_weight=None):
|
||
|
"""Fit Ridge classifier with cv.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : ndarray of shape (n_samples, n_features)
|
||
|
Training vectors, where `n_samples` is the number of samples
|
||
|
and `n_features` is the number of features. When using GCV,
|
||
|
will be cast to float64 if necessary.
|
||
|
|
||
|
y : ndarray of shape (n_samples,)
|
||
|
Target values. Will be cast to X's dtype if necessary.
|
||
|
|
||
|
sample_weight : float or ndarray of shape (n_samples,), default=None
|
||
|
Individual weights for each sample. If given a float, every sample
|
||
|
will have the same weight.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : object
|
||
|
Fitted estimator.
|
||
|
"""
|
||
|
_raise_for_unsupported_routing(self, "fit", sample_weight=sample_weight)
|
||
|
# `RidgeClassifier` does not accept "sag" or "saga" solver and thus support
|
||
|
# csr, csc, and coo sparse matrices. By using solver="eigen" we force to accept
|
||
|
# all sparse format.
|
||
|
X, y, sample_weight, Y = self._prepare_data(X, y, sample_weight, solver="eigen")
|
||
|
|
||
|
# If cv is None, gcv mode will be used and we used the binarized Y
|
||
|
# since y will not be binarized in _RidgeGCV estimator.
|
||
|
# If cv is not None, a GridSearchCV with some RidgeClassifier
|
||
|
# estimators are used where y will be binarized. Thus, we pass y
|
||
|
# instead of the binarized Y.
|
||
|
target = Y if self.cv is None else y
|
||
|
super().fit(X, target, sample_weight=sample_weight)
|
||
|
return self
|
||
|
|
||
|
def _more_tags(self):
|
||
|
return {
|
||
|
"multilabel": True,
|
||
|
"_xfail_checks": {
|
||
|
"check_sample_weights_invariance": (
|
||
|
"zero sample_weight is not equivalent to removing samples"
|
||
|
),
|
||
|
},
|
||
|
}
|