ai-content-maker/.venv/Lib/site-packages/sympy/matrices/expressions/tests/test_permutation.py

167 lines
5.5 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
from sympy.combinatorics import Permutation
from sympy.core.expr import unchanged
from sympy.matrices import Matrix
from sympy.matrices.expressions import \
MatMul, BlockDiagMatrix, Determinant, Inverse
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.matrices.expressions.special import ZeroMatrix, OneMatrix, Identity
from sympy.matrices.expressions.permutation import \
MatrixPermute, PermutationMatrix
from sympy.testing.pytest import raises
from sympy.core.symbol import Symbol
def test_PermutationMatrix_basic():
p = Permutation([1, 0])
assert unchanged(PermutationMatrix, p)
raises(ValueError, lambda: PermutationMatrix((0, 1, 2)))
assert PermutationMatrix(p).as_explicit() == Matrix([[0, 1], [1, 0]])
assert isinstance(PermutationMatrix(p)*MatrixSymbol('A', 2, 2), MatMul)
def test_PermutationMatrix_matmul():
p = Permutation([1, 2, 0])
P = PermutationMatrix(p)
M = Matrix([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
assert (P*M).as_explicit() == P.as_explicit()*M
assert (M*P).as_explicit() == M*P.as_explicit()
P1 = PermutationMatrix(Permutation([1, 2, 0]))
P2 = PermutationMatrix(Permutation([2, 1, 0]))
P3 = PermutationMatrix(Permutation([1, 0, 2]))
assert P1*P2 == P3
def test_PermutationMatrix_matpow():
p1 = Permutation([1, 2, 0])
P1 = PermutationMatrix(p1)
p2 = Permutation([2, 0, 1])
P2 = PermutationMatrix(p2)
assert P1**2 == P2
assert P1**3 == Identity(3)
def test_PermutationMatrix_identity():
p = Permutation([0, 1])
assert PermutationMatrix(p).is_Identity
p = Permutation([1, 0])
assert not PermutationMatrix(p).is_Identity
def test_PermutationMatrix_determinant():
P = PermutationMatrix(Permutation([0, 1, 2]))
assert Determinant(P).doit() == 1
P = PermutationMatrix(Permutation([0, 2, 1]))
assert Determinant(P).doit() == -1
P = PermutationMatrix(Permutation([2, 0, 1]))
assert Determinant(P).doit() == 1
def test_PermutationMatrix_inverse():
P = PermutationMatrix(Permutation(0, 1, 2))
assert Inverse(P).doit() == PermutationMatrix(Permutation(0, 2, 1))
def test_PermutationMatrix_rewrite_BlockDiagMatrix():
P = PermutationMatrix(Permutation([0, 1, 2, 3, 4, 5]))
P0 = PermutationMatrix(Permutation([0]))
assert P.rewrite(BlockDiagMatrix) == \
BlockDiagMatrix(P0, P0, P0, P0, P0, P0)
P = PermutationMatrix(Permutation([0, 1, 3, 2, 4, 5]))
P10 = PermutationMatrix(Permutation(0, 1))
assert P.rewrite(BlockDiagMatrix) == \
BlockDiagMatrix(P0, P0, P10, P0, P0)
P = PermutationMatrix(Permutation([1, 0, 3, 2, 5, 4]))
assert P.rewrite(BlockDiagMatrix) == \
BlockDiagMatrix(P10, P10, P10)
P = PermutationMatrix(Permutation([0, 4, 3, 2, 1, 5]))
P3210 = PermutationMatrix(Permutation([3, 2, 1, 0]))
assert P.rewrite(BlockDiagMatrix) == \
BlockDiagMatrix(P0, P3210, P0)
P = PermutationMatrix(Permutation([0, 4, 2, 3, 1, 5]))
P3120 = PermutationMatrix(Permutation([3, 1, 2, 0]))
assert P.rewrite(BlockDiagMatrix) == \
BlockDiagMatrix(P0, P3120, P0)
P = PermutationMatrix(Permutation(0, 3)(1, 4)(2, 5))
assert P.rewrite(BlockDiagMatrix) == BlockDiagMatrix(P)
def test_MartrixPermute_basic():
p = Permutation(0, 1)
P = PermutationMatrix(p)
A = MatrixSymbol('A', 2, 2)
raises(ValueError, lambda: MatrixPermute(Symbol('x'), p))
raises(ValueError, lambda: MatrixPermute(A, Symbol('x')))
assert MatrixPermute(A, P) == MatrixPermute(A, p)
raises(ValueError, lambda: MatrixPermute(A, p, 2))
pp = Permutation(0, 1, size=3)
assert MatrixPermute(A, pp) == MatrixPermute(A, p)
pp = Permutation(0, 1, 2)
raises(ValueError, lambda: MatrixPermute(A, pp))
def test_MatrixPermute_shape():
p = Permutation(0, 1)
A = MatrixSymbol('A', 2, 3)
assert MatrixPermute(A, p).shape == (2, 3)
def test_MatrixPermute_explicit():
p = Permutation(0, 1, 2)
A = MatrixSymbol('A', 3, 3)
AA = A.as_explicit()
assert MatrixPermute(A, p, 0).as_explicit() == \
AA.permute(p, orientation='rows')
assert MatrixPermute(A, p, 1).as_explicit() == \
AA.permute(p, orientation='cols')
def test_MatrixPermute_rewrite_MatMul():
p = Permutation(0, 1, 2)
A = MatrixSymbol('A', 3, 3)
assert MatrixPermute(A, p, 0).rewrite(MatMul).as_explicit() == \
MatrixPermute(A, p, 0).as_explicit()
assert MatrixPermute(A, p, 1).rewrite(MatMul).as_explicit() == \
MatrixPermute(A, p, 1).as_explicit()
def test_MatrixPermute_doit():
p = Permutation(0, 1, 2)
A = MatrixSymbol('A', 3, 3)
assert MatrixPermute(A, p).doit() == MatrixPermute(A, p)
p = Permutation(0, size=3)
A = MatrixSymbol('A', 3, 3)
assert MatrixPermute(A, p).doit().as_explicit() == \
MatrixPermute(A, p).as_explicit()
p = Permutation(0, 1, 2)
A = Identity(3)
assert MatrixPermute(A, p, 0).doit().as_explicit() == \
MatrixPermute(A, p, 0).as_explicit()
assert MatrixPermute(A, p, 1).doit().as_explicit() == \
MatrixPermute(A, p, 1).as_explicit()
A = ZeroMatrix(3, 3)
assert MatrixPermute(A, p).doit() == A
A = OneMatrix(3, 3)
assert MatrixPermute(A, p).doit() == A
A = MatrixSymbol('A', 4, 4)
p1 = Permutation(0, 1, 2, 3)
p2 = Permutation(0, 2, 3, 1)
expr = MatrixPermute(MatrixPermute(A, p1, 0), p2, 0)
assert expr.as_explicit() == expr.doit().as_explicit()
expr = MatrixPermute(MatrixPermute(A, p1, 1), p2, 1)
assert expr.as_explicit() == expr.doit().as_explicit()