293 lines
11 KiB
Python
293 lines
11 KiB
Python
|
from sympy.core.backend import sin, cos, tan, pi, symbols, Matrix, S, Function
|
||
|
from sympy.physics.mechanics import (Particle, Point, ReferenceFrame,
|
||
|
RigidBody)
|
||
|
from sympy.physics.mechanics import (angular_momentum, dynamicsymbols,
|
||
|
inertia, inertia_of_point_mass,
|
||
|
kinetic_energy, linear_momentum,
|
||
|
outer, potential_energy, msubs,
|
||
|
find_dynamicsymbols, Lagrangian)
|
||
|
|
||
|
from sympy.physics.mechanics.functions import (gravity, center_of_mass,
|
||
|
_validate_coordinates)
|
||
|
from sympy.testing.pytest import raises
|
||
|
|
||
|
|
||
|
q1, q2, q3, q4, q5 = symbols('q1 q2 q3 q4 q5')
|
||
|
N = ReferenceFrame('N')
|
||
|
A = N.orientnew('A', 'Axis', [q1, N.z])
|
||
|
B = A.orientnew('B', 'Axis', [q2, A.x])
|
||
|
C = B.orientnew('C', 'Axis', [q3, B.y])
|
||
|
|
||
|
|
||
|
def test_inertia():
|
||
|
N = ReferenceFrame('N')
|
||
|
ixx, iyy, izz = symbols('ixx iyy izz')
|
||
|
ixy, iyz, izx = symbols('ixy iyz izx')
|
||
|
assert inertia(N, ixx, iyy, izz) == (ixx * (N.x | N.x) + iyy *
|
||
|
(N.y | N.y) + izz * (N.z | N.z))
|
||
|
assert inertia(N, 0, 0, 0) == 0 * (N.x | N.x)
|
||
|
raises(TypeError, lambda: inertia(0, 0, 0, 0))
|
||
|
assert inertia(N, ixx, iyy, izz, ixy, iyz, izx) == (ixx * (N.x | N.x) +
|
||
|
ixy * (N.x | N.y) + izx * (N.x | N.z) + ixy * (N.y | N.x) + iyy *
|
||
|
(N.y | N.y) + iyz * (N.y | N.z) + izx * (N.z | N.x) + iyz * (N.z |
|
||
|
N.y) + izz * (N.z | N.z))
|
||
|
|
||
|
|
||
|
def test_inertia_of_point_mass():
|
||
|
r, s, t, m = symbols('r s t m')
|
||
|
N = ReferenceFrame('N')
|
||
|
|
||
|
px = r * N.x
|
||
|
I = inertia_of_point_mass(m, px, N)
|
||
|
assert I == m * r**2 * (N.y | N.y) + m * r**2 * (N.z | N.z)
|
||
|
|
||
|
py = s * N.y
|
||
|
I = inertia_of_point_mass(m, py, N)
|
||
|
assert I == m * s**2 * (N.x | N.x) + m * s**2 * (N.z | N.z)
|
||
|
|
||
|
pz = t * N.z
|
||
|
I = inertia_of_point_mass(m, pz, N)
|
||
|
assert I == m * t**2 * (N.x | N.x) + m * t**2 * (N.y | N.y)
|
||
|
|
||
|
p = px + py + pz
|
||
|
I = inertia_of_point_mass(m, p, N)
|
||
|
assert I == (m * (s**2 + t**2) * (N.x | N.x) -
|
||
|
m * r * s * (N.x | N.y) -
|
||
|
m * r * t * (N.x | N.z) -
|
||
|
m * r * s * (N.y | N.x) +
|
||
|
m * (r**2 + t**2) * (N.y | N.y) -
|
||
|
m * s * t * (N.y | N.z) -
|
||
|
m * r * t * (N.z | N.x) -
|
||
|
m * s * t * (N.z | N.y) +
|
||
|
m * (r**2 + s**2) * (N.z | N.z))
|
||
|
|
||
|
|
||
|
def test_linear_momentum():
|
||
|
N = ReferenceFrame('N')
|
||
|
Ac = Point('Ac')
|
||
|
Ac.set_vel(N, 25 * N.y)
|
||
|
I = outer(N.x, N.x)
|
||
|
A = RigidBody('A', Ac, N, 20, (I, Ac))
|
||
|
P = Point('P')
|
||
|
Pa = Particle('Pa', P, 1)
|
||
|
Pa.point.set_vel(N, 10 * N.x)
|
||
|
raises(TypeError, lambda: linear_momentum(A, A, Pa))
|
||
|
raises(TypeError, lambda: linear_momentum(N, N, Pa))
|
||
|
assert linear_momentum(N, A, Pa) == 10 * N.x + 500 * N.y
|
||
|
|
||
|
|
||
|
def test_angular_momentum_and_linear_momentum():
|
||
|
"""A rod with length 2l, centroidal inertia I, and mass M along with a
|
||
|
particle of mass m fixed to the end of the rod rotate with an angular rate
|
||
|
of omega about point O which is fixed to the non-particle end of the rod.
|
||
|
The rod's reference frame is A and the inertial frame is N."""
|
||
|
m, M, l, I = symbols('m, M, l, I')
|
||
|
omega = dynamicsymbols('omega')
|
||
|
N = ReferenceFrame('N')
|
||
|
a = ReferenceFrame('a')
|
||
|
O = Point('O')
|
||
|
Ac = O.locatenew('Ac', l * N.x)
|
||
|
P = Ac.locatenew('P', l * N.x)
|
||
|
O.set_vel(N, 0 * N.x)
|
||
|
a.set_ang_vel(N, omega * N.z)
|
||
|
Ac.v2pt_theory(O, N, a)
|
||
|
P.v2pt_theory(O, N, a)
|
||
|
Pa = Particle('Pa', P, m)
|
||
|
A = RigidBody('A', Ac, a, M, (I * outer(N.z, N.z), Ac))
|
||
|
expected = 2 * m * omega * l * N.y + M * l * omega * N.y
|
||
|
assert linear_momentum(N, A, Pa) == expected
|
||
|
raises(TypeError, lambda: angular_momentum(N, N, A, Pa))
|
||
|
raises(TypeError, lambda: angular_momentum(O, O, A, Pa))
|
||
|
raises(TypeError, lambda: angular_momentum(O, N, O, Pa))
|
||
|
expected = (I + M * l**2 + 4 * m * l**2) * omega * N.z
|
||
|
assert angular_momentum(O, N, A, Pa) == expected
|
||
|
|
||
|
|
||
|
def test_kinetic_energy():
|
||
|
m, M, l1 = symbols('m M l1')
|
||
|
omega = dynamicsymbols('omega')
|
||
|
N = ReferenceFrame('N')
|
||
|
O = Point('O')
|
||
|
O.set_vel(N, 0 * N.x)
|
||
|
Ac = O.locatenew('Ac', l1 * N.x)
|
||
|
P = Ac.locatenew('P', l1 * N.x)
|
||
|
a = ReferenceFrame('a')
|
||
|
a.set_ang_vel(N, omega * N.z)
|
||
|
Ac.v2pt_theory(O, N, a)
|
||
|
P.v2pt_theory(O, N, a)
|
||
|
Pa = Particle('Pa', P, m)
|
||
|
I = outer(N.z, N.z)
|
||
|
A = RigidBody('A', Ac, a, M, (I, Ac))
|
||
|
raises(TypeError, lambda: kinetic_energy(Pa, Pa, A))
|
||
|
raises(TypeError, lambda: kinetic_energy(N, N, A))
|
||
|
assert 0 == (kinetic_energy(N, Pa, A) - (M*l1**2*omega**2/2
|
||
|
+ 2*l1**2*m*omega**2 + omega**2/2)).expand()
|
||
|
|
||
|
|
||
|
def test_potential_energy():
|
||
|
m, M, l1, g, h, H = symbols('m M l1 g h H')
|
||
|
omega = dynamicsymbols('omega')
|
||
|
N = ReferenceFrame('N')
|
||
|
O = Point('O')
|
||
|
O.set_vel(N, 0 * N.x)
|
||
|
Ac = O.locatenew('Ac', l1 * N.x)
|
||
|
P = Ac.locatenew('P', l1 * N.x)
|
||
|
a = ReferenceFrame('a')
|
||
|
a.set_ang_vel(N, omega * N.z)
|
||
|
Ac.v2pt_theory(O, N, a)
|
||
|
P.v2pt_theory(O, N, a)
|
||
|
Pa = Particle('Pa', P, m)
|
||
|
I = outer(N.z, N.z)
|
||
|
A = RigidBody('A', Ac, a, M, (I, Ac))
|
||
|
Pa.potential_energy = m * g * h
|
||
|
A.potential_energy = M * g * H
|
||
|
assert potential_energy(A, Pa) == m * g * h + M * g * H
|
||
|
|
||
|
|
||
|
def test_Lagrangian():
|
||
|
M, m, g, h = symbols('M m g h')
|
||
|
N = ReferenceFrame('N')
|
||
|
O = Point('O')
|
||
|
O.set_vel(N, 0 * N.x)
|
||
|
P = O.locatenew('P', 1 * N.x)
|
||
|
P.set_vel(N, 10 * N.x)
|
||
|
Pa = Particle('Pa', P, 1)
|
||
|
Ac = O.locatenew('Ac', 2 * N.y)
|
||
|
Ac.set_vel(N, 5 * N.y)
|
||
|
a = ReferenceFrame('a')
|
||
|
a.set_ang_vel(N, 10 * N.z)
|
||
|
I = outer(N.z, N.z)
|
||
|
A = RigidBody('A', Ac, a, 20, (I, Ac))
|
||
|
Pa.potential_energy = m * g * h
|
||
|
A.potential_energy = M * g * h
|
||
|
raises(TypeError, lambda: Lagrangian(A, A, Pa))
|
||
|
raises(TypeError, lambda: Lagrangian(N, N, Pa))
|
||
|
|
||
|
|
||
|
def test_msubs():
|
||
|
a, b = symbols('a, b')
|
||
|
x, y, z = dynamicsymbols('x, y, z')
|
||
|
# Test simple substitution
|
||
|
expr = Matrix([[a*x + b, x*y.diff() + y],
|
||
|
[x.diff().diff(), z + sin(z.diff())]])
|
||
|
sol = Matrix([[a + b, y],
|
||
|
[x.diff().diff(), 1]])
|
||
|
sd = {x: 1, z: 1, z.diff(): 0, y.diff(): 0}
|
||
|
assert msubs(expr, sd) == sol
|
||
|
# Test smart substitution
|
||
|
expr = cos(x + y)*tan(x + y) + b*x.diff()
|
||
|
sd = {x: 0, y: pi/2, x.diff(): 1}
|
||
|
assert msubs(expr, sd, smart=True) == b + 1
|
||
|
N = ReferenceFrame('N')
|
||
|
v = x*N.x + y*N.y
|
||
|
d = x*(N.x|N.x) + y*(N.y|N.y)
|
||
|
v_sol = 1*N.y
|
||
|
d_sol = 1*(N.y|N.y)
|
||
|
sd = {x: 0, y: 1}
|
||
|
assert msubs(v, sd) == v_sol
|
||
|
assert msubs(d, sd) == d_sol
|
||
|
|
||
|
|
||
|
def test_find_dynamicsymbols():
|
||
|
a, b = symbols('a, b')
|
||
|
x, y, z = dynamicsymbols('x, y, z')
|
||
|
expr = Matrix([[a*x + b, x*y.diff() + y],
|
||
|
[x.diff().diff(), z + sin(z.diff())]])
|
||
|
# Test finding all dynamicsymbols
|
||
|
sol = {x, y.diff(), y, x.diff().diff(), z, z.diff()}
|
||
|
assert find_dynamicsymbols(expr) == sol
|
||
|
# Test finding all but those in sym_list
|
||
|
exclude_list = [x, y, z]
|
||
|
sol = {y.diff(), x.diff().diff(), z.diff()}
|
||
|
assert find_dynamicsymbols(expr, exclude=exclude_list) == sol
|
||
|
# Test finding all dynamicsymbols in a vector with a given reference frame
|
||
|
d, e, f = dynamicsymbols('d, e, f')
|
||
|
A = ReferenceFrame('A')
|
||
|
v = d * A.x + e * A.y + f * A.z
|
||
|
sol = {d, e, f}
|
||
|
assert find_dynamicsymbols(v, reference_frame=A) == sol
|
||
|
# Test if a ValueError is raised on supplying only a vector as input
|
||
|
raises(ValueError, lambda: find_dynamicsymbols(v))
|
||
|
|
||
|
|
||
|
def test_gravity():
|
||
|
N = ReferenceFrame('N')
|
||
|
m, M, g = symbols('m M g')
|
||
|
F1, F2 = dynamicsymbols('F1 F2')
|
||
|
po = Point('po')
|
||
|
pa = Particle('pa', po, m)
|
||
|
A = ReferenceFrame('A')
|
||
|
P = Point('P')
|
||
|
I = outer(A.x, A.x)
|
||
|
B = RigidBody('B', P, A, M, (I, P))
|
||
|
forceList = [(po, F1), (P, F2)]
|
||
|
forceList.extend(gravity(g*N.y, pa, B))
|
||
|
l = [(po, F1), (P, F2), (po, g*m*N.y), (P, g*M*N.y)]
|
||
|
|
||
|
for i in range(len(l)):
|
||
|
for j in range(len(l[i])):
|
||
|
assert forceList[i][j] == l[i][j]
|
||
|
|
||
|
# This function tests the center_of_mass() function
|
||
|
# that was added in PR #14758 to compute the center of
|
||
|
# mass of a system of bodies.
|
||
|
def test_center_of_mass():
|
||
|
a = ReferenceFrame('a')
|
||
|
m = symbols('m', real=True)
|
||
|
p1 = Particle('p1', Point('p1_pt'), S.One)
|
||
|
p2 = Particle('p2', Point('p2_pt'), S(2))
|
||
|
p3 = Particle('p3', Point('p3_pt'), S(3))
|
||
|
p4 = Particle('p4', Point('p4_pt'), m)
|
||
|
b_f = ReferenceFrame('b_f')
|
||
|
b_cm = Point('b_cm')
|
||
|
mb = symbols('mb')
|
||
|
b = RigidBody('b', b_cm, b_f, mb, (outer(b_f.x, b_f.x), b_cm))
|
||
|
p2.point.set_pos(p1.point, a.x)
|
||
|
p3.point.set_pos(p1.point, a.x + a.y)
|
||
|
p4.point.set_pos(p1.point, a.y)
|
||
|
b.masscenter.set_pos(p1.point, a.y + a.z)
|
||
|
point_o=Point('o')
|
||
|
point_o.set_pos(p1.point, center_of_mass(p1.point, p1, p2, p3, p4, b))
|
||
|
expr = 5/(m + mb + 6)*a.x + (m + mb + 3)/(m + mb + 6)*a.y + mb/(m + mb + 6)*a.z
|
||
|
assert point_o.pos_from(p1.point)-expr == 0
|
||
|
|
||
|
|
||
|
def test_validate_coordinates():
|
||
|
q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1:4 u1:4')
|
||
|
s1, s2, s3 = symbols('s1:4')
|
||
|
# Test normal
|
||
|
_validate_coordinates([q1, q2, q3], [u1, u2, u3])
|
||
|
# Test not equal number of coordinates and speeds
|
||
|
_validate_coordinates([q1, q2])
|
||
|
_validate_coordinates([q1, q2], [u1])
|
||
|
_validate_coordinates(speeds=[u1, u2])
|
||
|
# Test duplicate
|
||
|
_validate_coordinates([q1, q2, q2], [u1, u2, u3], check_duplicates=False)
|
||
|
raises(ValueError, lambda: _validate_coordinates(
|
||
|
[q1, q2, q2], [u1, u2, u3]))
|
||
|
_validate_coordinates([q1, q2, q3], [u1, u2, u2], check_duplicates=False)
|
||
|
raises(ValueError, lambda: _validate_coordinates(
|
||
|
[q1, q2, q3], [u1, u2, u2], check_duplicates=True))
|
||
|
raises(ValueError, lambda: _validate_coordinates(
|
||
|
[q1, q2, q3], [q1, u2, u3], check_duplicates=True))
|
||
|
# Test is_dynamicsymbols
|
||
|
_validate_coordinates([q1 + q2, q3], is_dynamicsymbols=False)
|
||
|
raises(ValueError, lambda: _validate_coordinates([q1 + q2, q3]))
|
||
|
_validate_coordinates([s1, q1, q2], [0, u1, u2], is_dynamicsymbols=False)
|
||
|
raises(ValueError, lambda: _validate_coordinates(
|
||
|
[s1, q1, q2], [0, u1, u2], is_dynamicsymbols=True))
|
||
|
_validate_coordinates([s1 + s2 + s3, q1], [0, u1], is_dynamicsymbols=False)
|
||
|
raises(ValueError, lambda: _validate_coordinates(
|
||
|
[s1 + s2 + s3, q1], [0, u1], is_dynamicsymbols=True))
|
||
|
# Test normal function
|
||
|
t = dynamicsymbols._t
|
||
|
a = symbols('a')
|
||
|
f1, f2 = symbols('f1:3', cls=Function)
|
||
|
_validate_coordinates([f1(a), f2(a)], is_dynamicsymbols=False)
|
||
|
raises(ValueError, lambda: _validate_coordinates([f1(a), f2(a)]))
|
||
|
raises(ValueError, lambda: _validate_coordinates(speeds=[f1(a), f2(a)]))
|
||
|
dynamicsymbols._t = a
|
||
|
_validate_coordinates([f1(a), f2(a)])
|
||
|
raises(ValueError, lambda: _validate_coordinates([f1(t), f2(t)]))
|
||
|
dynamicsymbols._t = t
|