213 lines
8.7 KiB
Python
213 lines
8.7 KiB
Python
|
from sympy.core.function import expand
|
||
|
from sympy.core.symbol import symbols
|
||
|
from sympy.functions.elementary.trigonometric import (cos, sin)
|
||
|
from sympy.matrices.dense import Matrix
|
||
|
from sympy.simplify.trigsimp import trigsimp
|
||
|
from sympy.physics.mechanics import (PinJoint, JointsMethod, Body, KanesMethod,
|
||
|
PrismaticJoint, LagrangesMethod, inertia)
|
||
|
from sympy.physics.vector import dynamicsymbols, ReferenceFrame
|
||
|
from sympy.testing.pytest import raises
|
||
|
from sympy.core.backend import zeros
|
||
|
from sympy.utilities.lambdify import lambdify
|
||
|
from sympy.solvers.solvers import solve
|
||
|
|
||
|
|
||
|
t = dynamicsymbols._t # type: ignore
|
||
|
|
||
|
|
||
|
def test_jointsmethod():
|
||
|
P = Body('P')
|
||
|
C = Body('C')
|
||
|
Pin = PinJoint('P1', P, C)
|
||
|
C_ixx, g = symbols('C_ixx g')
|
||
|
q, u = dynamicsymbols('q_P1, u_P1')
|
||
|
P.apply_force(g*P.y)
|
||
|
method = JointsMethod(P, Pin)
|
||
|
assert method.frame == P.frame
|
||
|
assert method.bodies == [C, P]
|
||
|
assert method.loads == [(P.masscenter, g*P.frame.y)]
|
||
|
assert method.q == Matrix([q])
|
||
|
assert method.u == Matrix([u])
|
||
|
assert method.kdes == Matrix([u - q.diff()])
|
||
|
soln = method.form_eoms()
|
||
|
assert soln == Matrix([[-C_ixx*u.diff()]])
|
||
|
assert method.forcing_full == Matrix([[u], [0]])
|
||
|
assert method.mass_matrix_full == Matrix([[1, 0], [0, C_ixx]])
|
||
|
assert isinstance(method.method, KanesMethod)
|
||
|
|
||
|
def test_jointmethod_duplicate_coordinates_speeds():
|
||
|
P = Body('P')
|
||
|
C = Body('C')
|
||
|
T = Body('T')
|
||
|
q, u = dynamicsymbols('q u')
|
||
|
P1 = PinJoint('P1', P, C, q)
|
||
|
P2 = PrismaticJoint('P2', C, T, q)
|
||
|
raises(ValueError, lambda: JointsMethod(P, P1, P2))
|
||
|
|
||
|
P1 = PinJoint('P1', P, C, speeds=u)
|
||
|
P2 = PrismaticJoint('P2', C, T, speeds=u)
|
||
|
raises(ValueError, lambda: JointsMethod(P, P1, P2))
|
||
|
|
||
|
P1 = PinJoint('P1', P, C, q, u)
|
||
|
P2 = PrismaticJoint('P2', C, T, q, u)
|
||
|
raises(ValueError, lambda: JointsMethod(P, P1, P2))
|
||
|
|
||
|
def test_complete_simple_double_pendulum():
|
||
|
q1, q2 = dynamicsymbols('q1 q2')
|
||
|
u1, u2 = dynamicsymbols('u1 u2')
|
||
|
m, l, g = symbols('m l g')
|
||
|
C = Body('C') # ceiling
|
||
|
PartP = Body('P', mass=m)
|
||
|
PartR = Body('R', mass=m)
|
||
|
J1 = PinJoint('J1', C, PartP, speeds=u1, coordinates=q1,
|
||
|
child_point=-l*PartP.x, joint_axis=C.z)
|
||
|
J2 = PinJoint('J2', PartP, PartR, speeds=u2, coordinates=q2,
|
||
|
child_point=-l*PartR.x, joint_axis=PartP.z)
|
||
|
|
||
|
PartP.apply_force(m*g*C.x)
|
||
|
PartR.apply_force(m*g*C.x)
|
||
|
|
||
|
method = JointsMethod(C, J1, J2)
|
||
|
method.form_eoms()
|
||
|
|
||
|
assert expand(method.mass_matrix_full) == Matrix([[1, 0, 0, 0],
|
||
|
[0, 1, 0, 0],
|
||
|
[0, 0, 2*l**2*m*cos(q2) + 3*l**2*m, l**2*m*cos(q2) + l**2*m],
|
||
|
[0, 0, l**2*m*cos(q2) + l**2*m, l**2*m]])
|
||
|
assert trigsimp(method.forcing_full) == trigsimp(Matrix([[u1], [u2], [-g*l*m*(sin(q1 + q2) + sin(q1)) -
|
||
|
g*l*m*sin(q1) + l**2*m*(2*u1 + u2)*u2*sin(q2)],
|
||
|
[-g*l*m*sin(q1 + q2) - l**2*m*u1**2*sin(q2)]]))
|
||
|
|
||
|
def test_two_dof_joints():
|
||
|
q1, q2, u1, u2 = dynamicsymbols('q1 q2 u1 u2')
|
||
|
m, c1, c2, k1, k2 = symbols('m c1 c2 k1 k2')
|
||
|
W = Body('W')
|
||
|
B1 = Body('B1', mass=m)
|
||
|
B2 = Body('B2', mass=m)
|
||
|
J1 = PrismaticJoint('J1', W, B1, coordinates=q1, speeds=u1)
|
||
|
J2 = PrismaticJoint('J2', B1, B2, coordinates=q2, speeds=u2)
|
||
|
W.apply_force(k1*q1*W.x, reaction_body=B1)
|
||
|
W.apply_force(c1*u1*W.x, reaction_body=B1)
|
||
|
B1.apply_force(k2*q2*W.x, reaction_body=B2)
|
||
|
B1.apply_force(c2*u2*W.x, reaction_body=B2)
|
||
|
method = JointsMethod(W, J1, J2)
|
||
|
method.form_eoms()
|
||
|
MM = method.mass_matrix
|
||
|
forcing = method.forcing
|
||
|
rhs = MM.LUsolve(forcing)
|
||
|
assert expand(rhs[0]) == expand((-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2)/m)
|
||
|
assert expand(rhs[1]) == expand((k1 * q1 + c1 * u1 - 2 * k2 * q2 - 2 *
|
||
|
c2 * u2) / m)
|
||
|
|
||
|
def test_simple_pedulum():
|
||
|
l, m, g = symbols('l m g')
|
||
|
C = Body('C')
|
||
|
b = Body('b', mass=m)
|
||
|
q = dynamicsymbols('q')
|
||
|
P = PinJoint('P', C, b, speeds=q.diff(t), coordinates=q,
|
||
|
child_point=-l * b.x, joint_axis=C.z)
|
||
|
b.potential_energy = - m * g * l * cos(q)
|
||
|
method = JointsMethod(C, P)
|
||
|
method.form_eoms(LagrangesMethod)
|
||
|
rhs = method.rhs()
|
||
|
assert rhs[1] == -g*sin(q)/l
|
||
|
|
||
|
def test_chaos_pendulum():
|
||
|
#https://www.pydy.org/examples/chaos_pendulum.html
|
||
|
mA, mB, lA, lB, IAxx, IBxx, IByy, IBzz, g = symbols('mA, mB, lA, lB, IAxx, IBxx, IByy, IBzz, g')
|
||
|
theta, phi, omega, alpha = dynamicsymbols('theta phi omega alpha')
|
||
|
|
||
|
A = ReferenceFrame('A')
|
||
|
B = ReferenceFrame('B')
|
||
|
|
||
|
rod = Body('rod', mass=mA, frame=A, central_inertia=inertia(A, IAxx, IAxx, 0))
|
||
|
plate = Body('plate', mass=mB, frame=B, central_inertia=inertia(B, IBxx, IByy, IBzz))
|
||
|
C = Body('C')
|
||
|
J1 = PinJoint('J1', C, rod, coordinates=theta, speeds=omega,
|
||
|
child_point=-lA * rod.z, joint_axis=C.y)
|
||
|
J2 = PinJoint('J2', rod, plate, coordinates=phi, speeds=alpha,
|
||
|
parent_point=(lB - lA) * rod.z, joint_axis=rod.z)
|
||
|
|
||
|
rod.apply_force(mA*g*C.z)
|
||
|
plate.apply_force(mB*g*C.z)
|
||
|
|
||
|
method = JointsMethod(C, J1, J2)
|
||
|
method.form_eoms()
|
||
|
|
||
|
MM = method.mass_matrix
|
||
|
forcing = method.forcing
|
||
|
rhs = MM.LUsolve(forcing)
|
||
|
xd = (-2 * IBxx * alpha * omega * sin(phi) * cos(phi) + 2 * IByy * alpha * omega * sin(phi) *
|
||
|
cos(phi) - g * lA * mA * sin(theta) - g * lB * mB * sin(theta)) / (IAxx + IBxx *
|
||
|
sin(phi)**2 + IByy * cos(phi)**2 + lA**2 * mA + lB**2 * mB)
|
||
|
assert (rhs[0] - xd).simplify() == 0
|
||
|
xd = (IBxx - IByy) * omega**2 * sin(phi) * cos(phi) / IBzz
|
||
|
assert (rhs[1] - xd).simplify() == 0
|
||
|
|
||
|
def test_four_bar_linkage_with_manual_constraints():
|
||
|
q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1:4, u1:4')
|
||
|
l1, l2, l3, l4, rho = symbols('l1:5, rho')
|
||
|
|
||
|
N = ReferenceFrame('N')
|
||
|
inertias = [inertia(N, 0, 0, rho * l ** 3 / 12) for l in (l1, l2, l3, l4)]
|
||
|
link1 = Body('Link1', frame=N, mass=rho * l1, central_inertia=inertias[0])
|
||
|
link2 = Body('Link2', mass=rho * l2, central_inertia=inertias[1])
|
||
|
link3 = Body('Link3', mass=rho * l3, central_inertia=inertias[2])
|
||
|
link4 = Body('Link4', mass=rho * l4, central_inertia=inertias[3])
|
||
|
|
||
|
joint1 = PinJoint(
|
||
|
'J1', link1, link2, coordinates=q1, speeds=u1, joint_axis=link1.z,
|
||
|
parent_point=l1 / 2 * link1.x, child_point=-l2 / 2 * link2.x)
|
||
|
joint2 = PinJoint(
|
||
|
'J2', link2, link3, coordinates=q2, speeds=u2, joint_axis=link2.z,
|
||
|
parent_point=l2 / 2 * link2.x, child_point=-l3 / 2 * link3.x)
|
||
|
joint3 = PinJoint(
|
||
|
'J3', link3, link4, coordinates=q3, speeds=u3, joint_axis=link3.z,
|
||
|
parent_point=l3 / 2 * link3.x, child_point=-l4 / 2 * link4.x)
|
||
|
|
||
|
loop = link4.masscenter.pos_from(link1.masscenter) \
|
||
|
+ l1 / 2 * link1.x + l4 / 2 * link4.x
|
||
|
|
||
|
fh = Matrix([loop.dot(link1.x), loop.dot(link1.y)])
|
||
|
|
||
|
method = JointsMethod(link1, joint1, joint2, joint3)
|
||
|
|
||
|
t = dynamicsymbols._t
|
||
|
qdots = solve(method.kdes, [q1.diff(t), q2.diff(t), q3.diff(t)])
|
||
|
fhd = fh.diff(t).subs(qdots)
|
||
|
|
||
|
kane = KanesMethod(method.frame, q_ind=[q1], u_ind=[u1],
|
||
|
q_dependent=[q2, q3], u_dependent=[u2, u3],
|
||
|
kd_eqs=method.kdes, configuration_constraints=fh,
|
||
|
velocity_constraints=fhd, forcelist=method.loads,
|
||
|
bodies=method.bodies)
|
||
|
fr, frs = kane.kanes_equations()
|
||
|
assert fr == zeros(1)
|
||
|
|
||
|
# Numerically check the mass- and forcing-matrix
|
||
|
p = Matrix([l1, l2, l3, l4, rho])
|
||
|
q = Matrix([q1, q2, q3])
|
||
|
u = Matrix([u1, u2, u3])
|
||
|
eval_m = lambdify((q, p), kane.mass_matrix)
|
||
|
eval_f = lambdify((q, u, p), kane.forcing)
|
||
|
eval_fhd = lambdify((q, u, p), fhd)
|
||
|
|
||
|
p_vals = [0.13, 0.24, 0.21, 0.34, 997]
|
||
|
q_vals = [2.1, 0.6655470375077588, 2.527408138024188] # Satisfies fh
|
||
|
u_vals = [0.2, -0.17963733938852067, 0.1309060540601612] # Satisfies fhd
|
||
|
mass_check = Matrix([[3.452709815256506e+01, 7.003948798374735e+00,
|
||
|
-4.939690970641498e+00],
|
||
|
[-2.203792703880936e-14, 2.071702479957077e-01,
|
||
|
2.842917573033711e-01],
|
||
|
[-1.300000000000123e-01, -8.836934896046506e-03,
|
||
|
1.864891330060847e-01]])
|
||
|
forcing_check = Matrix([[-0.031211821321648],
|
||
|
[-0.00066022608181],
|
||
|
[0.001813559741243]])
|
||
|
eps = 1e-10
|
||
|
assert all(abs(x) < eps for x in eval_fhd(q_vals, u_vals, p_vals))
|
||
|
assert all(abs(x) < eps for x in
|
||
|
(Matrix(eval_m(q_vals, p_vals)) - mass_check))
|
||
|
assert all(abs(x) < eps for x in
|
||
|
(Matrix(eval_f(q_vals, u_vals, p_vals)) - forcing_check))
|