118 lines
5.0 KiB
Python
118 lines
5.0 KiB
Python
|
import sympy.physics.mechanics.models as models
|
||
|
from sympy.core.backend import (cos, sin, Matrix, symbols, zeros)
|
||
|
from sympy.simplify.simplify import simplify
|
||
|
from sympy.physics.mechanics import (dynamicsymbols)
|
||
|
|
||
|
|
||
|
def test_multi_mass_spring_damper_inputs():
|
||
|
|
||
|
c0, k0, m0 = symbols("c0 k0 m0")
|
||
|
g = symbols("g")
|
||
|
v0, x0, f0 = dynamicsymbols("v0 x0 f0")
|
||
|
|
||
|
kane1 = models.multi_mass_spring_damper(1)
|
||
|
massmatrix1 = Matrix([[m0]])
|
||
|
forcing1 = Matrix([[-c0*v0 - k0*x0]])
|
||
|
assert simplify(massmatrix1 - kane1.mass_matrix) == Matrix([0])
|
||
|
assert simplify(forcing1 - kane1.forcing) == Matrix([0])
|
||
|
|
||
|
kane2 = models.multi_mass_spring_damper(1, True)
|
||
|
massmatrix2 = Matrix([[m0]])
|
||
|
forcing2 = Matrix([[-c0*v0 + g*m0 - k0*x0]])
|
||
|
assert simplify(massmatrix2 - kane2.mass_matrix) == Matrix([0])
|
||
|
assert simplify(forcing2 - kane2.forcing) == Matrix([0])
|
||
|
|
||
|
kane3 = models.multi_mass_spring_damper(1, True, True)
|
||
|
massmatrix3 = Matrix([[m0]])
|
||
|
forcing3 = Matrix([[-c0*v0 + g*m0 - k0*x0 + f0]])
|
||
|
assert simplify(massmatrix3 - kane3.mass_matrix) == Matrix([0])
|
||
|
assert simplify(forcing3 - kane3.forcing) == Matrix([0])
|
||
|
|
||
|
kane4 = models.multi_mass_spring_damper(1, False, True)
|
||
|
massmatrix4 = Matrix([[m0]])
|
||
|
forcing4 = Matrix([[-c0*v0 - k0*x0 + f0]])
|
||
|
assert simplify(massmatrix4 - kane4.mass_matrix) == Matrix([0])
|
||
|
assert simplify(forcing4 - kane4.forcing) == Matrix([0])
|
||
|
|
||
|
|
||
|
def test_multi_mass_spring_damper_higher_order():
|
||
|
c0, k0, m0 = symbols("c0 k0 m0")
|
||
|
c1, k1, m1 = symbols("c1 k1 m1")
|
||
|
c2, k2, m2 = symbols("c2 k2 m2")
|
||
|
v0, x0 = dynamicsymbols("v0 x0")
|
||
|
v1, x1 = dynamicsymbols("v1 x1")
|
||
|
v2, x2 = dynamicsymbols("v2 x2")
|
||
|
|
||
|
kane1 = models.multi_mass_spring_damper(3)
|
||
|
massmatrix1 = Matrix([[m0 + m1 + m2, m1 + m2, m2],
|
||
|
[m1 + m2, m1 + m2, m2],
|
||
|
[m2, m2, m2]])
|
||
|
forcing1 = Matrix([[-c0*v0 - k0*x0],
|
||
|
[-c1*v1 - k1*x1],
|
||
|
[-c2*v2 - k2*x2]])
|
||
|
assert simplify(massmatrix1 - kane1.mass_matrix) == zeros(3)
|
||
|
assert simplify(forcing1 - kane1.forcing) == Matrix([0, 0, 0])
|
||
|
|
||
|
|
||
|
def test_n_link_pendulum_on_cart_inputs():
|
||
|
l0, m0 = symbols("l0 m0")
|
||
|
m1 = symbols("m1")
|
||
|
g = symbols("g")
|
||
|
q0, q1, F, T1 = dynamicsymbols("q0 q1 F T1")
|
||
|
u0, u1 = dynamicsymbols("u0 u1")
|
||
|
|
||
|
kane1 = models.n_link_pendulum_on_cart(1)
|
||
|
massmatrix1 = Matrix([[m0 + m1, -l0*m1*cos(q1)],
|
||
|
[-l0*m1*cos(q1), l0**2*m1]])
|
||
|
forcing1 = Matrix([[-l0*m1*u1**2*sin(q1) + F], [g*l0*m1*sin(q1)]])
|
||
|
assert simplify(massmatrix1 - kane1.mass_matrix) == zeros(2)
|
||
|
assert simplify(forcing1 - kane1.forcing) == Matrix([0, 0])
|
||
|
|
||
|
kane2 = models.n_link_pendulum_on_cart(1, False)
|
||
|
massmatrix2 = Matrix([[m0 + m1, -l0*m1*cos(q1)],
|
||
|
[-l0*m1*cos(q1), l0**2*m1]])
|
||
|
forcing2 = Matrix([[-l0*m1*u1**2*sin(q1)], [g*l0*m1*sin(q1)]])
|
||
|
assert simplify(massmatrix2 - kane2.mass_matrix) == zeros(2)
|
||
|
assert simplify(forcing2 - kane2.forcing) == Matrix([0, 0])
|
||
|
|
||
|
kane3 = models.n_link_pendulum_on_cart(1, False, True)
|
||
|
massmatrix3 = Matrix([[m0 + m1, -l0*m1*cos(q1)],
|
||
|
[-l0*m1*cos(q1), l0**2*m1]])
|
||
|
forcing3 = Matrix([[-l0*m1*u1**2*sin(q1)], [g*l0*m1*sin(q1) + T1]])
|
||
|
assert simplify(massmatrix3 - kane3.mass_matrix) == zeros(2)
|
||
|
assert simplify(forcing3 - kane3.forcing) == Matrix([0, 0])
|
||
|
|
||
|
kane4 = models.n_link_pendulum_on_cart(1, True, False)
|
||
|
massmatrix4 = Matrix([[m0 + m1, -l0*m1*cos(q1)],
|
||
|
[-l0*m1*cos(q1), l0**2*m1]])
|
||
|
forcing4 = Matrix([[-l0*m1*u1**2*sin(q1) + F], [g*l0*m1*sin(q1)]])
|
||
|
assert simplify(massmatrix4 - kane4.mass_matrix) == zeros(2)
|
||
|
assert simplify(forcing4 - kane4.forcing) == Matrix([0, 0])
|
||
|
|
||
|
|
||
|
def test_n_link_pendulum_on_cart_higher_order():
|
||
|
l0, m0 = symbols("l0 m0")
|
||
|
l1, m1 = symbols("l1 m1")
|
||
|
m2 = symbols("m2")
|
||
|
g = symbols("g")
|
||
|
q0, q1, q2 = dynamicsymbols("q0 q1 q2")
|
||
|
u0, u1, u2 = dynamicsymbols("u0 u1 u2")
|
||
|
F, T1 = dynamicsymbols("F T1")
|
||
|
|
||
|
kane1 = models.n_link_pendulum_on_cart(2)
|
||
|
massmatrix1 = Matrix([[m0 + m1 + m2, -l0*m1*cos(q1) - l0*m2*cos(q1),
|
||
|
-l1*m2*cos(q2)],
|
||
|
[-l0*m1*cos(q1) - l0*m2*cos(q1), l0**2*m1 + l0**2*m2,
|
||
|
l0*l1*m2*(sin(q1)*sin(q2) + cos(q1)*cos(q2))],
|
||
|
[-l1*m2*cos(q2),
|
||
|
l0*l1*m2*(sin(q1)*sin(q2) + cos(q1)*cos(q2)),
|
||
|
l1**2*m2]])
|
||
|
forcing1 = Matrix([[-l0*m1*u1**2*sin(q1) - l0*m2*u1**2*sin(q1) -
|
||
|
l1*m2*u2**2*sin(q2) + F],
|
||
|
[g*l0*m1*sin(q1) + g*l0*m2*sin(q1) -
|
||
|
l0*l1*m2*(sin(q1)*cos(q2) - sin(q2)*cos(q1))*u2**2],
|
||
|
[g*l1*m2*sin(q2) - l0*l1*m2*(-sin(q1)*cos(q2) +
|
||
|
sin(q2)*cos(q1))*u1**2]])
|
||
|
assert simplify(massmatrix1 - kane1.mass_matrix) == zeros(3)
|
||
|
assert simplify(forcing1 - kane1.forcing) == Matrix([0, 0, 0])
|