ai-content-maker/.venv/Lib/site-packages/sympy/physics/quantum/operatorordering.py

330 lines
11 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
"""Functions for reordering operator expressions."""
import warnings
from sympy.core.add import Add
from sympy.core.mul import Mul
from sympy.core.numbers import Integer
from sympy.core.power import Pow
from sympy.physics.quantum import Operator, Commutator, AntiCommutator
from sympy.physics.quantum.boson import BosonOp
from sympy.physics.quantum.fermion import FermionOp
__all__ = [
'normal_order',
'normal_ordered_form'
]
def _expand_powers(factors):
"""
Helper function for normal_ordered_form and normal_order: Expand a
power expression to a multiplication expression so that that the
expression can be handled by the normal ordering functions.
"""
new_factors = []
for factor in factors.args:
if (isinstance(factor, Pow)
and isinstance(factor.args[1], Integer)
and factor.args[1] > 0):
for n in range(factor.args[1]):
new_factors.append(factor.args[0])
else:
new_factors.append(factor)
return new_factors
def _normal_ordered_form_factor(product, independent=False, recursive_limit=10,
_recursive_depth=0):
"""
Helper function for normal_ordered_form_factor: Write multiplication
expression with bosonic or fermionic operators on normally ordered form,
using the bosonic and fermionic commutation relations. The resulting
operator expression is equivalent to the argument, but will in general be
a sum of operator products instead of a simple product.
"""
factors = _expand_powers(product)
new_factors = []
n = 0
while n < len(factors) - 1:
if isinstance(factors[n], BosonOp):
# boson
if not isinstance(factors[n + 1], BosonOp):
new_factors.append(factors[n])
elif factors[n].is_annihilation == factors[n + 1].is_annihilation:
if (independent and
str(factors[n].name) > str(factors[n + 1].name)):
new_factors.append(factors[n + 1])
new_factors.append(factors[n])
n += 1
else:
new_factors.append(factors[n])
elif not factors[n].is_annihilation:
new_factors.append(factors[n])
else:
if factors[n + 1].is_annihilation:
new_factors.append(factors[n])
else:
if factors[n].args[0] != factors[n + 1].args[0]:
if independent:
c = 0
else:
c = Commutator(factors[n], factors[n + 1])
new_factors.append(factors[n + 1] * factors[n] + c)
else:
c = Commutator(factors[n], factors[n + 1])
new_factors.append(
factors[n + 1] * factors[n] + c.doit())
n += 1
elif isinstance(factors[n], FermionOp):
# fermion
if not isinstance(factors[n + 1], FermionOp):
new_factors.append(factors[n])
elif factors[n].is_annihilation == factors[n + 1].is_annihilation:
if (independent and
str(factors[n].name) > str(factors[n + 1].name)):
new_factors.append(factors[n + 1])
new_factors.append(factors[n])
n += 1
else:
new_factors.append(factors[n])
elif not factors[n].is_annihilation:
new_factors.append(factors[n])
else:
if factors[n + 1].is_annihilation:
new_factors.append(factors[n])
else:
if factors[n].args[0] != factors[n + 1].args[0]:
if independent:
c = 0
else:
c = AntiCommutator(factors[n], factors[n + 1])
new_factors.append(-factors[n + 1] * factors[n] + c)
else:
c = AntiCommutator(factors[n], factors[n + 1])
new_factors.append(
-factors[n + 1] * factors[n] + c.doit())
n += 1
elif isinstance(factors[n], Operator):
if isinstance(factors[n + 1], (BosonOp, FermionOp)):
new_factors.append(factors[n + 1])
new_factors.append(factors[n])
n += 1
else:
new_factors.append(factors[n])
else:
new_factors.append(factors[n])
n += 1
if n == len(factors) - 1:
new_factors.append(factors[-1])
if new_factors == factors:
return product
else:
expr = Mul(*new_factors).expand()
return normal_ordered_form(expr,
recursive_limit=recursive_limit,
_recursive_depth=_recursive_depth + 1,
independent=independent)
def _normal_ordered_form_terms(expr, independent=False, recursive_limit=10,
_recursive_depth=0):
"""
Helper function for normal_ordered_form: loop through each term in an
addition expression and call _normal_ordered_form_factor to perform the
factor to an normally ordered expression.
"""
new_terms = []
for term in expr.args:
if isinstance(term, Mul):
new_term = _normal_ordered_form_factor(
term, recursive_limit=recursive_limit,
_recursive_depth=_recursive_depth, independent=independent)
new_terms.append(new_term)
else:
new_terms.append(term)
return Add(*new_terms)
def normal_ordered_form(expr, independent=False, recursive_limit=10,
_recursive_depth=0):
"""Write an expression with bosonic or fermionic operators on normal
ordered form, where each term is normally ordered. Note that this
normal ordered form is equivalent to the original expression.
Parameters
==========
expr : expression
The expression write on normal ordered form.
recursive_limit : int (default 10)
The number of allowed recursive applications of the function.
Examples
========
>>> from sympy.physics.quantum import Dagger
>>> from sympy.physics.quantum.boson import BosonOp
>>> from sympy.physics.quantum.operatorordering import normal_ordered_form
>>> a = BosonOp("a")
>>> normal_ordered_form(a * Dagger(a))
1 + Dagger(a)*a
"""
if _recursive_depth > recursive_limit:
warnings.warn("Too many recursions, aborting")
return expr
if isinstance(expr, Add):
return _normal_ordered_form_terms(expr,
recursive_limit=recursive_limit,
_recursive_depth=_recursive_depth,
independent=independent)
elif isinstance(expr, Mul):
return _normal_ordered_form_factor(expr,
recursive_limit=recursive_limit,
_recursive_depth=_recursive_depth,
independent=independent)
else:
return expr
def _normal_order_factor(product, recursive_limit=10, _recursive_depth=0):
"""
Helper function for normal_order: Normal order a multiplication expression
with bosonic or fermionic operators. In general the resulting operator
expression will not be equivalent to original product.
"""
factors = _expand_powers(product)
n = 0
new_factors = []
while n < len(factors) - 1:
if (isinstance(factors[n], BosonOp) and
factors[n].is_annihilation):
# boson
if not isinstance(factors[n + 1], BosonOp):
new_factors.append(factors[n])
else:
if factors[n + 1].is_annihilation:
new_factors.append(factors[n])
else:
if factors[n].args[0] != factors[n + 1].args[0]:
new_factors.append(factors[n + 1] * factors[n])
else:
new_factors.append(factors[n + 1] * factors[n])
n += 1
elif (isinstance(factors[n], FermionOp) and
factors[n].is_annihilation):
# fermion
if not isinstance(factors[n + 1], FermionOp):
new_factors.append(factors[n])
else:
if factors[n + 1].is_annihilation:
new_factors.append(factors[n])
else:
if factors[n].args[0] != factors[n + 1].args[0]:
new_factors.append(-factors[n + 1] * factors[n])
else:
new_factors.append(-factors[n + 1] * factors[n])
n += 1
else:
new_factors.append(factors[n])
n += 1
if n == len(factors) - 1:
new_factors.append(factors[-1])
if new_factors == factors:
return product
else:
expr = Mul(*new_factors).expand()
return normal_order(expr,
recursive_limit=recursive_limit,
_recursive_depth=_recursive_depth + 1)
def _normal_order_terms(expr, recursive_limit=10, _recursive_depth=0):
"""
Helper function for normal_order: look through each term in an addition
expression and call _normal_order_factor to perform the normal ordering
on the factors.
"""
new_terms = []
for term in expr.args:
if isinstance(term, Mul):
new_term = _normal_order_factor(term,
recursive_limit=recursive_limit,
_recursive_depth=_recursive_depth)
new_terms.append(new_term)
else:
new_terms.append(term)
return Add(*new_terms)
def normal_order(expr, recursive_limit=10, _recursive_depth=0):
"""Normal order an expression with bosonic or fermionic operators. Note
that this normal order is not equivalent to the original expression, but
the creation and annihilation operators in each term in expr is reordered
so that the expression becomes normal ordered.
Parameters
==========
expr : expression
The expression to normal order.
recursive_limit : int (default 10)
The number of allowed recursive applications of the function.
Examples
========
>>> from sympy.physics.quantum import Dagger
>>> from sympy.physics.quantum.boson import BosonOp
>>> from sympy.physics.quantum.operatorordering import normal_order
>>> a = BosonOp("a")
>>> normal_order(a * Dagger(a))
Dagger(a)*a
"""
if _recursive_depth > recursive_limit:
warnings.warn("Too many recursions, aborting")
return expr
if isinstance(expr, Add):
return _normal_order_terms(expr, recursive_limit=recursive_limit,
_recursive_depth=_recursive_depth)
elif isinstance(expr, Mul):
return _normal_order_factor(expr, recursive_limit=recursive_limit,
_recursive_depth=_recursive_depth)
else:
return expr