ai-content-maker/.venv/Lib/site-packages/sympy/polys/matrices/ddm.py

497 lines
13 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
"""
Module for the DDM class.
The DDM class is an internal representation used by DomainMatrix. The letters
DDM stand for Dense Domain Matrix. A DDM instance represents a matrix using
elements from a polynomial Domain (e.g. ZZ, QQ, ...) in a dense-matrix
representation.
Basic usage:
>>> from sympy import ZZ, QQ
>>> from sympy.polys.matrices.ddm import DDM
>>> A = DDM([[ZZ(0), ZZ(1)], [ZZ(-1), ZZ(0)]], (2, 2), ZZ)
>>> A.shape
(2, 2)
>>> A
[[0, 1], [-1, 0]]
>>> type(A)
<class 'sympy.polys.matrices.ddm.DDM'>
>>> A @ A
[[-1, 0], [0, -1]]
The ddm_* functions are designed to operate on DDM as well as on an ordinary
list of lists:
>>> from sympy.polys.matrices.dense import ddm_idet
>>> ddm_idet(A, QQ)
1
>>> ddm_idet([[0, 1], [-1, 0]], QQ)
1
>>> A
[[-1, 0], [0, -1]]
Note that ddm_idet modifies the input matrix in-place. It is recommended to
use the DDM.det method as a friendlier interface to this instead which takes
care of copying the matrix:
>>> B = DDM([[ZZ(0), ZZ(1)], [ZZ(-1), ZZ(0)]], (2, 2), ZZ)
>>> B.det()
1
Normally DDM would not be used directly and is just part of the internal
representation of DomainMatrix which adds further functionality including e.g.
unifying domains.
The dense format used by DDM is a list of lists of elements e.g. the 2x2
identity matrix is like [[1, 0], [0, 1]]. The DDM class itself is a subclass
of list and its list items are plain lists. Elements are accessed as e.g.
ddm[i][j] where ddm[i] gives the ith row and ddm[i][j] gets the element in the
jth column of that row. Subclassing list makes e.g. iteration and indexing
very efficient. We do not override __getitem__ because it would lose that
benefit.
The core routines are implemented by the ddm_* functions defined in dense.py.
Those functions are intended to be able to operate on a raw list-of-lists
representation of matrices with most functions operating in-place. The DDM
class takes care of copying etc and also stores a Domain object associated
with its elements. This makes it possible to implement things like A + B with
domain checking and also shape checking so that the list of lists
representation is friendlier.
"""
from itertools import chain
from .exceptions import DMBadInputError, DMShapeError, DMDomainError
from .dense import (
ddm_transpose,
ddm_iadd,
ddm_isub,
ddm_ineg,
ddm_imul,
ddm_irmul,
ddm_imatmul,
ddm_irref,
ddm_idet,
ddm_iinv,
ddm_ilu_split,
ddm_ilu_solve,
ddm_berk,
)
from sympy.polys.domains import QQ
from .lll import ddm_lll, ddm_lll_transform
class DDM(list):
"""Dense matrix based on polys domain elements
This is a list subclass and is a wrapper for a list of lists that supports
basic matrix arithmetic +, -, *, **.
"""
fmt = 'dense'
def __init__(self, rowslist, shape, domain):
super().__init__(rowslist)
self.shape = self.rows, self.cols = m, n = shape
self.domain = domain
if not (len(self) == m and all(len(row) == n for row in self)):
raise DMBadInputError("Inconsistent row-list/shape")
def getitem(self, i, j):
return self[i][j]
def setitem(self, i, j, value):
self[i][j] = value
def extract_slice(self, slice1, slice2):
ddm = [row[slice2] for row in self[slice1]]
rows = len(ddm)
cols = len(ddm[0]) if ddm else len(range(self.shape[1])[slice2])
return DDM(ddm, (rows, cols), self.domain)
def extract(self, rows, cols):
ddm = []
for i in rows:
rowi = self[i]
ddm.append([rowi[j] for j in cols])
return DDM(ddm, (len(rows), len(cols)), self.domain)
def to_list(self):
return list(self)
def to_list_flat(self):
flat = []
for row in self:
flat.extend(row)
return flat
def flatiter(self):
return chain.from_iterable(self)
def flat(self):
items = []
for row in self:
items.extend(row)
return items
def to_dok(self):
return {(i, j): e for i, row in enumerate(self) for j, e in enumerate(row)}
def to_ddm(self):
return self
def to_sdm(self):
return SDM.from_list(self, self.shape, self.domain)
def convert_to(self, K):
Kold = self.domain
if K == Kold:
return self.copy()
rows = ([K.convert_from(e, Kold) for e in row] for row in self)
return DDM(rows, self.shape, K)
def __str__(self):
rowsstr = ['[%s]' % ', '.join(map(str, row)) for row in self]
return '[%s]' % ', '.join(rowsstr)
def __repr__(self):
cls = type(self).__name__
rows = list.__repr__(self)
return '%s(%s, %s, %s)' % (cls, rows, self.shape, self.domain)
def __eq__(self, other):
if not isinstance(other, DDM):
return False
return (super().__eq__(other) and self.domain == other.domain)
def __ne__(self, other):
return not self.__eq__(other)
@classmethod
def zeros(cls, shape, domain):
z = domain.zero
m, n = shape
rowslist = ([z] * n for _ in range(m))
return DDM(rowslist, shape, domain)
@classmethod
def ones(cls, shape, domain):
one = domain.one
m, n = shape
rowlist = ([one] * n for _ in range(m))
return DDM(rowlist, shape, domain)
@classmethod
def eye(cls, size, domain):
one = domain.one
ddm = cls.zeros((size, size), domain)
for i in range(size):
ddm[i][i] = one
return ddm
def copy(self):
copyrows = (row[:] for row in self)
return DDM(copyrows, self.shape, self.domain)
def transpose(self):
rows, cols = self.shape
if rows:
ddmT = ddm_transpose(self)
else:
ddmT = [[]] * cols
return DDM(ddmT, (cols, rows), self.domain)
def __add__(a, b):
if not isinstance(b, DDM):
return NotImplemented
return a.add(b)
def __sub__(a, b):
if not isinstance(b, DDM):
return NotImplemented
return a.sub(b)
def __neg__(a):
return a.neg()
def __mul__(a, b):
if b in a.domain:
return a.mul(b)
else:
return NotImplemented
def __rmul__(a, b):
if b in a.domain:
return a.mul(b)
else:
return NotImplemented
def __matmul__(a, b):
if isinstance(b, DDM):
return a.matmul(b)
else:
return NotImplemented
@classmethod
def _check(cls, a, op, b, ashape, bshape):
if a.domain != b.domain:
msg = "Domain mismatch: %s %s %s" % (a.domain, op, b.domain)
raise DMDomainError(msg)
if ashape != bshape:
msg = "Shape mismatch: %s %s %s" % (a.shape, op, b.shape)
raise DMShapeError(msg)
def add(a, b):
"""a + b"""
a._check(a, '+', b, a.shape, b.shape)
c = a.copy()
ddm_iadd(c, b)
return c
def sub(a, b):
"""a - b"""
a._check(a, '-', b, a.shape, b.shape)
c = a.copy()
ddm_isub(c, b)
return c
def neg(a):
"""-a"""
b = a.copy()
ddm_ineg(b)
return b
def mul(a, b):
c = a.copy()
ddm_imul(c, b)
return c
def rmul(a, b):
c = a.copy()
ddm_irmul(c, b)
return c
def matmul(a, b):
"""a @ b (matrix product)"""
m, o = a.shape
o2, n = b.shape
a._check(a, '*', b, o, o2)
c = a.zeros((m, n), a.domain)
ddm_imatmul(c, a, b)
return c
def mul_elementwise(a, b):
assert a.shape == b.shape
assert a.domain == b.domain
c = [[aij * bij for aij, bij in zip(ai, bi)] for ai, bi in zip(a, b)]
return DDM(c, a.shape, a.domain)
def hstack(A, *B):
"""Horizontally stacks :py:class:`~.DDM` matrices.
Examples
========
>>> from sympy import ZZ
>>> from sympy.polys.matrices.sdm import DDM
>>> A = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> B = DDM([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ)
>>> A.hstack(B)
[[1, 2, 5, 6], [3, 4, 7, 8]]
>>> C = DDM([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ)
>>> A.hstack(B, C)
[[1, 2, 5, 6, 9, 10], [3, 4, 7, 8, 11, 12]]
"""
Anew = list(A.copy())
rows, cols = A.shape
domain = A.domain
for Bk in B:
Bkrows, Bkcols = Bk.shape
assert Bkrows == rows
assert Bk.domain == domain
cols += Bkcols
for i, Bki in enumerate(Bk):
Anew[i].extend(Bki)
return DDM(Anew, (rows, cols), A.domain)
def vstack(A, *B):
"""Vertically stacks :py:class:`~.DDM` matrices.
Examples
========
>>> from sympy import ZZ
>>> from sympy.polys.matrices.sdm import DDM
>>> A = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> B = DDM([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ)
>>> A.vstack(B)
[[1, 2], [3, 4], [5, 6], [7, 8]]
>>> C = DDM([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ)
>>> A.vstack(B, C)
[[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12]]
"""
Anew = list(A.copy())
rows, cols = A.shape
domain = A.domain
for Bk in B:
Bkrows, Bkcols = Bk.shape
assert Bkcols == cols
assert Bk.domain == domain
rows += Bkrows
Anew.extend(Bk.copy())
return DDM(Anew, (rows, cols), A.domain)
def applyfunc(self, func, domain):
elements = (list(map(func, row)) for row in self)
return DDM(elements, self.shape, domain)
def scc(a):
"""Strongly connected components of a square matrix *a*.
Examples
========
>>> from sympy import ZZ
>>> from sympy.polys.matrices.sdm import DDM
>>> A = DDM([[ZZ(1), ZZ(0)], [ZZ(0), ZZ(1)]], (2, 2), ZZ)
>>> A.scc()
[[0], [1]]
See also
========
sympy.polys.matrices.domainmatrix.DomainMatrix.scc
"""
return a.to_sdm().scc()
def rref(a):
"""Reduced-row echelon form of a and list of pivots"""
b = a.copy()
K = a.domain
partial_pivot = K.is_RealField or K.is_ComplexField
pivots = ddm_irref(b, _partial_pivot=partial_pivot)
return b, pivots
def nullspace(a):
rref, pivots = a.rref()
rows, cols = a.shape
domain = a.domain
basis = []
nonpivots = []
for i in range(cols):
if i in pivots:
continue
nonpivots.append(i)
vec = [domain.one if i == j else domain.zero for j in range(cols)]
for ii, jj in enumerate(pivots):
vec[jj] -= rref[ii][i]
basis.append(vec)
return DDM(basis, (len(basis), cols), domain), nonpivots
def particular(a):
return a.to_sdm().particular().to_ddm()
def det(a):
"""Determinant of a"""
m, n = a.shape
if m != n:
raise DMShapeError("Determinant of non-square matrix")
b = a.copy()
K = b.domain
deta = ddm_idet(b, K)
return deta
def inv(a):
"""Inverse of a"""
m, n = a.shape
if m != n:
raise DMShapeError("Determinant of non-square matrix")
ainv = a.copy()
K = a.domain
ddm_iinv(ainv, a, K)
return ainv
def lu(a):
"""L, U decomposition of a"""
m, n = a.shape
K = a.domain
U = a.copy()
L = a.eye(m, K)
swaps = ddm_ilu_split(L, U, K)
return L, U, swaps
def lu_solve(a, b):
"""x where a*x = b"""
m, n = a.shape
m2, o = b.shape
a._check(a, 'lu_solve', b, m, m2)
L, U, swaps = a.lu()
x = a.zeros((n, o), a.domain)
ddm_ilu_solve(x, L, U, swaps, b)
return x
def charpoly(a):
"""Coefficients of characteristic polynomial of a"""
K = a.domain
m, n = a.shape
if m != n:
raise DMShapeError("Charpoly of non-square matrix")
vec = ddm_berk(a, K)
coeffs = [vec[i][0] for i in range(n+1)]
return coeffs
def is_zero_matrix(self):
"""
Says whether this matrix has all zero entries.
"""
zero = self.domain.zero
return all(Mij == zero for Mij in self.flatiter())
def is_upper(self):
"""
Says whether this matrix is upper-triangular. True can be returned
even if the matrix is not square.
"""
zero = self.domain.zero
return all(Mij == zero for i, Mi in enumerate(self) for Mij in Mi[:i])
def is_lower(self):
"""
Says whether this matrix is lower-triangular. True can be returned
even if the matrix is not square.
"""
zero = self.domain.zero
return all(Mij == zero for i, Mi in enumerate(self) for Mij in Mi[i+1:])
def lll(A, delta=QQ(3, 4)):
return ddm_lll(A, delta=delta)
def lll_transform(A, delta=QQ(3, 4)):
return ddm_lll_transform(A, delta=delta)
from .sdm import SDM