ai-content-maker/.venv/Lib/site-packages/sympy/vector/parametricregion.py

190 lines
5.8 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
from functools import singledispatch
from sympy.core.numbers import pi
from sympy.functions.elementary.trigonometric import tan
from sympy.simplify import trigsimp
from sympy.core import Basic, Tuple
from sympy.core.symbol import _symbol
from sympy.solvers import solve
from sympy.geometry import Point, Segment, Curve, Ellipse, Polygon
from sympy.vector import ImplicitRegion
class ParametricRegion(Basic):
"""
Represents a parametric region in space.
Examples
========
>>> from sympy import cos, sin, pi
>>> from sympy.abc import r, theta, t, a, b, x, y
>>> from sympy.vector import ParametricRegion
>>> ParametricRegion((t, t**2), (t, -1, 2))
ParametricRegion((t, t**2), (t, -1, 2))
>>> ParametricRegion((x, y), (x, 3, 4), (y, 5, 6))
ParametricRegion((x, y), (x, 3, 4), (y, 5, 6))
>>> ParametricRegion((r*cos(theta), r*sin(theta)), (r, -2, 2), (theta, 0, pi))
ParametricRegion((r*cos(theta), r*sin(theta)), (r, -2, 2), (theta, 0, pi))
>>> ParametricRegion((a*cos(t), b*sin(t)), t)
ParametricRegion((a*cos(t), b*sin(t)), t)
>>> circle = ParametricRegion((r*cos(theta), r*sin(theta)), r, (theta, 0, pi))
>>> circle.parameters
(r, theta)
>>> circle.definition
(r*cos(theta), r*sin(theta))
>>> circle.limits
{theta: (0, pi)}
Dimension of a parametric region determines whether a region is a curve, surface
or volume region. It does not represent its dimensions in space.
>>> circle.dimensions
1
Parameters
==========
definition : tuple to define base scalars in terms of parameters.
bounds : Parameter or a tuple of length 3 to define parameter and corresponding lower and upper bound.
"""
def __new__(cls, definition, *bounds):
parameters = ()
limits = {}
if not isinstance(bounds, Tuple):
bounds = Tuple(*bounds)
for bound in bounds:
if isinstance(bound, (tuple, Tuple)):
if len(bound) != 3:
raise ValueError("Tuple should be in the form (parameter, lowerbound, upperbound)")
parameters += (bound[0],)
limits[bound[0]] = (bound[1], bound[2])
else:
parameters += (bound,)
if not isinstance(definition, (tuple, Tuple)):
definition = (definition,)
obj = super().__new__(cls, Tuple(*definition), *bounds)
obj._parameters = parameters
obj._limits = limits
return obj
@property
def definition(self):
return self.args[0]
@property
def limits(self):
return self._limits
@property
def parameters(self):
return self._parameters
@property
def dimensions(self):
return len(self.limits)
@singledispatch
def parametric_region_list(reg):
"""
Returns a list of ParametricRegion objects representing the geometric region.
Examples
========
>>> from sympy.abc import t
>>> from sympy.vector import parametric_region_list
>>> from sympy.geometry import Point, Curve, Ellipse, Segment, Polygon
>>> p = Point(2, 5)
>>> parametric_region_list(p)
[ParametricRegion((2, 5))]
>>> c = Curve((t**3, 4*t), (t, -3, 4))
>>> parametric_region_list(c)
[ParametricRegion((t**3, 4*t), (t, -3, 4))]
>>> e = Ellipse(Point(1, 3), 2, 3)
>>> parametric_region_list(e)
[ParametricRegion((2*cos(t) + 1, 3*sin(t) + 3), (t, 0, 2*pi))]
>>> s = Segment(Point(1, 3), Point(2, 6))
>>> parametric_region_list(s)
[ParametricRegion((t + 1, 3*t + 3), (t, 0, 1))]
>>> p1, p2, p3, p4 = [(0, 1), (2, -3), (5, 3), (-2, 3)]
>>> poly = Polygon(p1, p2, p3, p4)
>>> parametric_region_list(poly)
[ParametricRegion((2*t, 1 - 4*t), (t, 0, 1)), ParametricRegion((3*t + 2, 6*t - 3), (t, 0, 1)),\
ParametricRegion((5 - 7*t, 3), (t, 0, 1)), ParametricRegion((2*t - 2, 3 - 2*t), (t, 0, 1))]
"""
raise ValueError("SymPy cannot determine parametric representation of the region.")
@parametric_region_list.register(Point)
def _(obj):
return [ParametricRegion(obj.args)]
@parametric_region_list.register(Curve) # type: ignore
def _(obj):
definition = obj.arbitrary_point(obj.parameter).args
bounds = obj.limits
return [ParametricRegion(definition, bounds)]
@parametric_region_list.register(Ellipse) # type: ignore
def _(obj, parameter='t'):
definition = obj.arbitrary_point(parameter).args
t = _symbol(parameter, real=True)
bounds = (t, 0, 2*pi)
return [ParametricRegion(definition, bounds)]
@parametric_region_list.register(Segment) # type: ignore
def _(obj, parameter='t'):
t = _symbol(parameter, real=True)
definition = obj.arbitrary_point(t).args
for i in range(0, 3):
lower_bound = solve(definition[i] - obj.points[0].args[i], t)
upper_bound = solve(definition[i] - obj.points[1].args[i], t)
if len(lower_bound) == 1 and len(upper_bound) == 1:
bounds = t, lower_bound[0], upper_bound[0]
break
definition_tuple = obj.arbitrary_point(parameter).args
return [ParametricRegion(definition_tuple, bounds)]
@parametric_region_list.register(Polygon) # type: ignore
def _(obj, parameter='t'):
l = [parametric_region_list(side, parameter)[0] for side in obj.sides]
return l
@parametric_region_list.register(ImplicitRegion) # type: ignore
def _(obj, parameters=('t', 's')):
definition = obj.rational_parametrization(parameters)
bounds = []
for i in range(len(obj.variables) - 1):
# Each parameter is replaced by its tangent to simplify intergation
parameter = _symbol(parameters[i], real=True)
definition = [trigsimp(elem.subs(parameter, tan(parameter/2))) for elem in definition]
bounds.append((parameter, 0, 2*pi),)
definition = Tuple(*definition)
return [ParametricRegion(definition, *bounds)]