ai-content-maker/.venv/Lib/site-packages/thinc/layers/mxnetwrapper.py

117 lines
4.2 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
from typing import Any, Callable, Optional, Tuple, Type
from ..config import registry
from ..model import Model
from ..shims import MXNetShim
from ..types import ArgsKwargs
from ..util import convert_recursive, is_mxnet_array, is_xp_array, mxnet2xp, xp2mxnet
@registry.layers("MXNetWrapper.v1")
def MXNetWrapper(
mxnet_model,
convert_inputs: Optional[Callable] = None,
convert_outputs: Optional[Callable] = None,
model_class: Type[Model] = Model,
model_name: str = "mxnet",
) -> Model[Any, Any]:
"""Wrap a MXNet model, so that it has the same API as Thinc models.
To optimize the model, you'll need to create a MXNet optimizer and call
optimizer.step() after each batch.
Your MXNet model's forward method can take arbitrary args and kwargs,
but must return either a single tensor as output or a tuple. You may find the
MXNet register_forward_hook helpful if you need to adapt the output.
The convert functions are used to map inputs and outputs to and from your
MXNet model. Each function should return the converted output, and a callback
to use during the backward pass. So:
Xmxnet, get_dX = convert_inputs(X)
Ymxnet, mxnet_backprop = model.shims[0](Xmxnet, is_train)
Y, get_dYmxnet = convert_outputs(Ymxnet)
To allow maximum flexibility, the MXNetShim expects ArgsKwargs objects
on the way into the forward and backward passes. The ArgsKwargs objects
will be passed straight into the model in the forward pass, and straight
into `mxnet.autograd.backward` during the backward pass.
"""
if convert_inputs is None:
convert_inputs = convert_mxnet_default_inputs
if convert_outputs is None:
convert_outputs = convert_mxnet_default_outputs
return model_class(
model_name,
forward,
attrs={"convert_inputs": convert_inputs, "convert_outputs": convert_outputs},
shims=[MXNetShim(mxnet_model)],
)
def forward(model: Model, X: Any, is_train: bool) -> Tuple[Any, Callable]:
"""Return the output of the wrapped MXNet model for the given input,
along with a callback to handle the backward pass.
"""
convert_inputs = model.attrs["convert_inputs"]
convert_outputs = model.attrs["convert_outputs"]
Xmxnet, get_dX = convert_inputs(model, X, is_train)
Ymxnet, mxnet_backprop = model.shims[0](Xmxnet, is_train)
Y, get_dYmxnet = convert_outputs(model, (X, Ymxnet), is_train)
def backprop(dY: Any) -> Any:
dYmxnet = get_dYmxnet(dY)
dXmxnet = mxnet_backprop(dYmxnet)
dX = get_dX(dXmxnet)
return dX
return Y, backprop
# Default conversion functions
def convert_mxnet_default_inputs(
model: Model, X: Any, is_train: bool
) -> Tuple[ArgsKwargs, Callable[[ArgsKwargs], Any]]:
xp2mxnet_ = lambda x: xp2mxnet(x, requires_grad=is_train)
converted = convert_recursive(is_xp_array, xp2mxnet_, X)
if isinstance(converted, ArgsKwargs):
def reverse_conversion(dXmxnet):
return convert_recursive(is_mxnet_array, mxnet2xp, dXmxnet)
return converted, reverse_conversion
elif isinstance(converted, dict):
def reverse_conversion(dXmxnet):
dX = convert_recursive(is_mxnet_array, mxnet2xp, dXmxnet)
return dX.kwargs
return ArgsKwargs(args=tuple(), kwargs=converted), reverse_conversion
elif isinstance(converted, (tuple, list)):
def reverse_conversion(dXmxnet):
dX = convert_recursive(is_mxnet_array, mxnet2xp, dXmxnet)
return dX.args
return ArgsKwargs(args=tuple(converted), kwargs={}), reverse_conversion
else:
def reverse_conversion(dXmxnet):
dX = convert_recursive(is_mxnet_array, mxnet2xp, dXmxnet)
return dX.args[0]
return ArgsKwargs(args=(converted,), kwargs={}), reverse_conversion
def convert_mxnet_default_outputs(model: Model, X_Ymxnet: Any, is_train: bool):
X, Ymxnet = X_Ymxnet
Y = convert_recursive(is_mxnet_array, mxnet2xp, Ymxnet)
def reverse_conversion(dY: Any) -> ArgsKwargs:
dYmxnet = convert_recursive(is_xp_array, xp2mxnet, dY)
return ArgsKwargs(args=((Ymxnet,),), kwargs={"head_grads": dYmxnet})
return Y, reverse_conversion