ai-content-maker/.venv/Lib/site-packages/thinc/layers/parametricattention_v2.py

101 lines
2.9 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
from typing import Callable, Optional, Tuple, cast
from ..config import registry
from ..model import Model
from ..types import Floats2d, Ragged
from ..util import get_width
from .noop import noop
InT = Ragged
OutT = Ragged
KEY_TRANSFORM_REF: str = "key_transform"
@registry.layers("ParametricAttention.v2")
def ParametricAttention_v2(
*,
key_transform: Optional[Model[Floats2d, Floats2d]] = None,
nO: Optional[int] = None
) -> Model[InT, OutT]:
if key_transform is None:
key_transform = noop()
"""Weight inputs by similarity to a learned vector"""
return Model(
"para-attn",
forward,
init=init,
params={"Q": None},
dims={"nO": nO},
refs={KEY_TRANSFORM_REF: key_transform},
layers=[key_transform],
)
def forward(model: Model[InT, OutT], Xr: InT, is_train: bool) -> Tuple[OutT, Callable]:
Q = model.get_param("Q")
key_transform = model.get_ref(KEY_TRANSFORM_REF)
attention, bp_attention = _get_attention(
model.ops, Q, key_transform, Xr.dataXd, Xr.lengths, is_train
)
output, bp_output = _apply_attention(model.ops, attention, Xr.dataXd, Xr.lengths)
def backprop(dYr: OutT) -> InT:
dX, d_attention = bp_output(dYr.dataXd)
dQ, dX2 = bp_attention(d_attention)
model.inc_grad("Q", dQ.ravel())
dX += dX2
return Ragged(dX, dYr.lengths)
return Ragged(output, Xr.lengths), backprop
def init(
model: Model[InT, OutT], X: Optional[InT] = None, Y: Optional[OutT] = None
) -> None:
key_transform = model.get_ref(KEY_TRANSFORM_REF)
width = get_width(X) if X is not None else None
if width:
model.set_dim("nO", width)
if key_transform.has_dim("nO"):
key_transform.set_dim("nO", width)
# Randomly initialize the parameter, as though it were an embedding.
Q = model.ops.alloc1f(model.get_dim("nO"))
Q += model.ops.xp.random.uniform(-0.1, 0.1, Q.shape)
model.set_param("Q", Q)
X_array = X.dataXd if X is not None else None
Y_array = Y.dataXd if Y is not None else None
key_transform.initialize(X_array, Y_array)
def _get_attention(ops, Q, key_transform, X, lengths, is_train):
K, K_bp = key_transform(X, is_train=is_train)
attention = ops.gemm(K, ops.reshape2f(Q, -1, 1))
attention = ops.softmax_sequences(attention, lengths)
def get_attention_bwd(d_attention):
d_attention = ops.backprop_softmax_sequences(d_attention, attention, lengths)
dQ = ops.gemm(K, d_attention, trans1=True)
dY = ops.xp.outer(d_attention, Q)
dX = K_bp(dY)
return dQ, dX
return attention, get_attention_bwd
def _apply_attention(ops, attention, X, lengths):
output = X * attention
def apply_attention_bwd(d_output):
d_attention = (X * d_output).sum(axis=1, keepdims=True)
dX = d_output * attention
return dX, d_attention
return output, apply_attention_bwd