ai-content-maker/.venv/Lib/site-packages/thinc/layers/tensorflowwrapper.py

184 lines
6.4 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
# mypy: ignore-errors
from typing import Any, Callable, Dict, Optional, Tuple, Type, TypeVar
import srsly
from ..compat import tensorflow as tf
from ..model import Model
from ..shims import TensorFlowShim, keras_model_fns, maybe_handshake_model
from ..types import ArgsKwargs, ArrayXd
from ..util import (
assert_tensorflow_installed,
convert_recursive,
is_tensorflow_array,
is_xp_array,
tensorflow2xp,
xp2tensorflow,
)
InT = TypeVar("InT")
OutT = TypeVar("OutT")
InFunc = TypeVar("InFunc")
XType = TypeVar("XType", bound=ArrayXd)
YType = TypeVar("YType", bound=ArrayXd)
def keras_subclass(
name: str,
X: XType,
Y: YType,
input_shape: Tuple[int, ...],
compile_args: Optional[Dict[str, Any]] = None,
) -> Callable[[InFunc], InFunc]:
"""Decorate a custom keras subclassed model with enough information to
serialize and deserialize it reliably in the face of the many restrictions
on keras subclassed models.
name (str): The unique namespace string to use to represent this model class.
X (Any): A sample X input for performing a forward pass on the network.
Y (Any): A sample Y input for performing a backward pass on the network.
input_shape (Tuple[int, ...]): A set of input shapes for building the network.
compile: Arguments to pass directly to the keras `model.compile` call.
RETURNS (Callable): The decorated class.
"""
compile_defaults = {"optimizer": "adam", "loss": "mse"}
if compile_args is None:
compile_args = compile_defaults
else:
compile_args = {**compile_defaults, **compile_args}
def call_fn(clazz):
clazz.catalogue_name = property(lambda inst: name)
clazz.eg_shape = property(lambda inst: input_shape)
clazz.eg_compile = property(lambda inst: compile_args)
clazz.eg_x = property(lambda inst: X)
clazz.eg_y = property(lambda inst: Y)
@keras_model_fns(name)
def create_component(*call_args, **call_kwargs):
return clazz(*call_args, **call_kwargs)
# Capture construction args and store them on the instance
wrapped_init = clazz.__init__
def __init__(self, *args, **kwargs):
wrapped_init(self, *args, **kwargs)
try:
srsly.json_dumps(args)
srsly.json_dumps(kwargs)
except BaseException as _err:
raise ValueError(
"In order to serialize Keras Subclass models, the constructor "
"arguments must be serializable. This allows thinc to recreate "
"the code-based model with the same configuration.\n"
f"The encountered error is: {_err}"
)
self.eg_args = ArgsKwargs(args, kwargs)
clazz.__init__ = __init__
return clazz
return call_fn
def TensorFlowWrapper(
tensorflow_model: Any,
convert_inputs: Optional[Callable] = None,
convert_outputs: Optional[Callable] = None,
optimizer: Optional[Any] = None,
model_class: Type[Model] = Model,
model_name: str = "tensorflow",
) -> Model[InT, OutT]:
"""Wrap a TensorFlow model, so that it has the same API as Thinc models.
To optimize the model, you'll need to create a TensorFlow optimizer and call
optimizer.apply_gradients after each batch.
"""
assert_tensorflow_installed()
if not isinstance(tensorflow_model, tf.keras.models.Model):
err = f"Expected tf.keras.models.Model, got: {type(tensorflow_model)}"
raise ValueError(err)
tensorflow_model = maybe_handshake_model(tensorflow_model)
if convert_inputs is None:
convert_inputs = _convert_inputs
if convert_outputs is None:
convert_outputs = _convert_outputs
return model_class(
model_name,
forward,
shims=[TensorFlowShim(tensorflow_model, optimizer=optimizer)],
attrs={"convert_inputs": convert_inputs, "convert_outputs": convert_outputs},
)
def forward(model: Model[InT, OutT], X: InT, is_train: bool) -> Tuple[OutT, Callable]:
"""Return the output of the wrapped TensorFlow model for the given input,
along with a callback to handle the backward pass.
"""
convert_inputs = model.attrs["convert_inputs"]
convert_outputs = model.attrs["convert_outputs"]
tensorflow_model = model.shims[0]
X_tensorflow, get_dX = convert_inputs(model, X, is_train)
if is_train:
Y_tensorflow, tensorflow_backprop = tensorflow_model(X_tensorflow, is_train)
else:
Y_tensorflow = tensorflow_model(X_tensorflow, is_train)
Y, get_dY_tensorflow = convert_outputs(model, Y_tensorflow, is_train)
def backprop(dY: OutT) -> InT:
dY_tensorflow = get_dY_tensorflow(dY)
dX_tensorflow = tensorflow_backprop(dY_tensorflow)
return get_dX(dX_tensorflow)
return Y, backprop
# Default conversion functions
# These are pretty much the same as the PyTorch one, but I think we should
# leave the duplication -- I think the abstraction could get pretty messy,
# and then may need to be undone, as there can always be different specifics.
def _convert_inputs(model, X, is_train):
xp2tensorflow_ = lambda x: xp2tensorflow(x, requires_grad=is_train)
converted = convert_recursive(is_xp_array, xp2tensorflow_, X)
if isinstance(converted, ArgsKwargs):
def reverse_conversion(dXtf):
return convert_recursive(is_tensorflow_array, tensorflow2xp, dXtf)
return converted, reverse_conversion
elif isinstance(converted, dict):
def reverse_conversion(dXtf):
dX = convert_recursive(is_tensorflow_array, tensorflow2xp, dXtf)
return dX.kwargs
return ArgsKwargs(args=tuple(), kwargs=converted), reverse_conversion
elif isinstance(converted, (tuple, list)):
def reverse_conversion(dXtf):
dX = convert_recursive(is_tensorflow_array, tensorflow2xp, dXtf)
return dX.args
return ArgsKwargs(args=converted, kwargs={}), reverse_conversion
else:
def reverse_conversion(dXtf):
dX = convert_recursive(is_tensorflow_array, tensorflow2xp, dXtf)
return dX.args[0]
return ArgsKwargs(args=(converted,), kwargs={}), reverse_conversion
def _convert_outputs(model, Ytf, is_train):
Y = convert_recursive(is_tensorflow_array, tensorflow2xp, Ytf)
def reverse_conversion(dY):
return convert_recursive(is_xp_array, xp2tensorflow, dY)
return Y, reverse_conversion