ai-content-maker/.venv/Lib/site-packages/torch/_dynamo/debug_utils.py

803 lines
27 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
# mypy: disable-error-code="method-assign"
import copy
import functools
import getpass
import inspect
import itertools
import logging
import os
import re
import subprocess
import tempfile
import textwrap
from collections import Counter
from importlib import import_module
from typing import Any, Callable, Dict, List, Optional, TypeVar
import torch
import torch._prims_common as utils
import torch._subclasses.meta_utils
from torch import Tensor
from torch._dynamo.testing import rand_strided
from torch._prims_common import is_float_dtype
from torch.multiprocessing.reductions import StorageWeakRef
from torch.utils._content_store import ContentStoreReader, ContentStoreWriter
from . import config
from .utils import clone_inputs, get_debug_dir
log = logging.getLogger(__name__)
T = TypeVar("T")
inductor_config = import_module("torch._inductor.config")
use_buck = inductor_config.is_fbcode()
if use_buck:
import libfb.py.build_info
extra_deps = []
extra_imports = ""
if use_buck:
extra_deps = [
"//caffe2/torch/fb/sparsenn:sparsenn_operators_gpu",
"//caffe2/torch/fb/sparsenn:sparsenn_operators",
"//deeplearning/fbgemm/fbgemm_gpu:sparse_ops_cpu",
"//deeplearning/fbgemm/fbgemm_gpu:sparse_ops",
]
cur_target = libfb.py.build_info.BuildInfo.get_build_rule().replace("fbcode:", "//") # type: ignore[possibly-undefined]
extra_imports = "\n".join([f'torch.ops.load_library("{x}")' for x in extra_deps])
BUCK_CMD_PREFIX = ["buck2", "run", "@mode/dev-nosan"]
class BuckTargetWriter:
def __init__(self, filename):
self.subdir, self.py_file = os.path.split(os.path.abspath(filename))
self.target = self.py_file.replace(".py", "")
# Get main_module path from fbcode
self.path = f'{self.subdir.replace("/", ".")}.{self.target}'
self.path = self.path[self.path.find("fbcode.") :]
self.path = self.path[7:]
# Get cmd line path
tmp = self.subdir
tmp = tmp[tmp.find("fbcode/") :][7:]
self.cmd_line_path = f"//{tmp}:{self.target}"
def build(self):
extra_cpp_deps = "\n".join([f' "{x}",' for x in extra_deps])
return textwrap.dedent(
f"""
load("@fbcode_macros//build_defs:python_binary.bzl", "python_binary")
python_binary(
name="{self.target}",
srcs = ["{self.py_file}"],
compile = False,
deps = [
"//caffe2:torch",
"//caffe2/functorch:functorch",
"//triton:triton",
"{cur_target}",
],
cpp_deps = [
{extra_cpp_deps}
],
main_module = "{self.path}",
par_style = "xar",
)
"""
)
def write(self, print_msg=True):
target_file = os.path.join(self.subdir, "TARGETS")
with open(target_file, "w") as fd:
fd.write(self.build())
# log.warning("Wrote isolation TARGETS file at %s", target_file)
cmd_split = BUCK_CMD_PREFIX + [self.cmd_line_path]
if print_msg:
log.warning(
"Found an example that reproduces the error. Run this cmd to repro - %s",
" ".join(cmd_split),
)
return cmd_split
def minifier_dir():
path = os.path.join(get_debug_dir(), "minifier")
if path is None:
path = f"{tempfile.gettempdir()}/minifier_{getpass.getuser()}"
if not os.path.exists(path):
os.makedirs(path, exist_ok=True)
return path
MAX_CONSTANT_NUMEL_INLINE = 4
class NNModuleToString:
safe_reprs = [
torch.nn.Linear,
torch.nn.Conv1d,
torch.nn.Conv2d,
torch.nn.Conv3d,
torch.nn.BatchNorm1d,
torch.nn.BatchNorm2d,
torch.nn.BatchNorm3d,
torch.nn.LayerNorm,
torch.nn.Dropout,
torch.nn.Softmax,
torch.nn.ReLU,
torch.nn.GELU,
torch.nn.Identity,
torch.nn.MaxPool2d,
torch.nn.Embedding,
torch.nn.Tanh,
torch.nn.ConvTranspose1d,
torch.nn.GLU,
torch.nn.LSTM,
torch.nn.Flatten,
torch.nn.AdaptiveAvgPool2d,
]
@staticmethod
def can_convert_to_string(gm):
cant_convert = set()
for _, module in gm.named_children():
if type(module) not in NNModuleToString.safe_reprs:
cant_convert.add(module)
if len(cant_convert) > 0:
log.warning("We have not tested reprs of some modules - %s", cant_convert)
# TODO - Assuming that all modules can be safely repr'd. Check if that assumption is correct.
return True
@staticmethod
def convert(gm):
from torch.nn.modules.module import _addindent
tab = " " * 4
model_str = textwrap.dedent(
"""
from torch.nn import *
class Repro(torch.nn.Module):
def __init__(self):
super().__init__()
"""
)
for module_name, module in gm.named_children():
module_str = f"{module.__repr__()}"
# module should be a core torch.nn.Module, so all parameters
# should be on the same device.
example_param = next(module.parameters(), None)
if example_param is not None and example_param.is_cuda:
module_str = f"{module_str}.cuda()"
model_str += f"{tab*2}self.{module_name} = {module_str}\n"
for buffer_name, buffer in gm._buffers.items():
if buffer is None:
continue
# Serialize full data for small buffers
if buffer.numel() <= MAX_CONSTANT_NUMEL_INLINE:
from torch._tensor_str import PRINT_OPTS
assert PRINT_OPTS.threshold >= MAX_CONSTANT_NUMEL_INLINE
tensor_str = repr(buffer)
elif torch.is_floating_point(buffer):
tensor_str = f"torch.randn({list(buffer.shape)}, dtype={buffer.dtype})"
else:
tensor_str = (
f"torch.randint(1, size={list(buffer.shape)}, dtype={buffer.dtype})"
)
if buffer.is_cuda:
tensor_str = f"{tensor_str}.cuda()"
model_str += f"{tab*2}self.register_buffer('{buffer_name}', {tensor_str})\n"
for param_name, param in gm._parameters.items():
if param is None:
continue
maybe_device = ""
if param.is_cuda:
maybe_device = ', device="cuda"'
tensor_str = f"torch.nn.Parameter(torch.randn({list(param.shape)}, dtype={param.dtype}{maybe_device}))"
model_str += f"{tab*2}self.{param_name} = {tensor_str}\n"
# TODO - Keep this code for now. But, I don't think we will need this.
# attrs = dir(gm)
# for attr in attrs:
# if "_tensor_constant" in attr:
# val = getattr(gm, attr)
# model_str += f" {attr} = {val!r}\n"
model_str += f"{_addindent(gm.code, 4)}\n"
return model_str
@functools.lru_cache(None) # subprocess is expensive
def _cuda_system_info_comment():
if not torch.cuda.is_available():
return "# torch.cuda.is_available()==False, no GPU info collected\n"
model_str = "# CUDA Info: \n"
try:
cuda_version_out = subprocess.check_output(["nvcc", "--version"])
cuda_version_lines = cuda_version_out.decode().split("\n")
comment = "".join([f"# {s} \n" for s in cuda_version_lines if s not in [""]])
model_str += f"{comment}\n"
except (FileNotFoundError, subprocess.CalledProcessError):
model_str += "# nvcc not found\n"
gpu_names = Counter(
torch.cuda.get_device_name(i) for i in range(torch.cuda.device_count())
)
model_str += "# GPU Hardware Info: \n"
for name, count in gpu_names.items():
model_str += f"# {name} : {count} \n"
model_str += "\n"
return model_str
def generate_config_string(*, stable_output=False):
import torch._functorch.config
import torch._inductor.config
if stable_output:
return "# config omitted due to stable_output=True"
experimental_config = torch.fx.experimental._config.codegen_config() # type: ignore[attr-defined]
return f"""\
import torch._dynamo.config
import torch._inductor.config
import torch._functorch.config
import torch.fx.experimental._config
{torch._dynamo.config.codegen_config()}
{torch._inductor.config.codegen_config()}
{torch._functorch.config.codegen_config()}
{experimental_config}
"""
def get_minifier_repro_path():
return os.path.join(minifier_dir(), "minifier_launcher.py")
def helper_for_dump_minify(contents):
minified_repro_path = get_minifier_repro_path()
log.warning("Writing minified repro to:\n%s", minified_repro_path)
if use_buck:
BuckTargetWriter(minified_repro_path).write()
try:
with open(minified_repro_path, "w") as fd:
fd.write(contents)
except OSError as e:
log.exception(e)
raise NotImplementedError("Could not write to {minified_repro_path}") from e
class AccuracyError(Exception):
pass
def clone_inputs_retaining_gradness(example_inputs):
"""
This clone inputs is different from utils clone_input. In case of minifier,
all the tensors are leaf tensors while creating a new graph. So, we set the
requires_grad field w/o checking the leafness of the tensor.
"""
cloned_inputs = clone_inputs(example_inputs)
for idx in range(len(example_inputs)):
if isinstance(cloned_inputs[idx], torch.Tensor):
cloned_inputs[idx].requires_grad_(example_inputs[idx].requires_grad)
return cloned_inputs
def run_fwd_maybe_bwd(gm, args, only_fwd=False, disable_clone=False):
"""
Runs a forward and possibly backward iteration for a given mod and args.
When disable_clone is True, we will use args as-is without cloning.
This is higher fidelity but we may destroy the args in the process.
"""
from torch._functorch.aot_autograd import make_boxed_func
from .testing import collect_results, reduce_to_scalar_loss, requires_bwd_pass
gm = copy.deepcopy(gm)
if not disable_clone:
args = clone_inputs_retaining_gradness(args)
if hasattr(gm, "zero_grad"):
gm.zero_grad(True)
# TorchInductor returned callable expects lists. So, boxing the call.
orig_named_parameters = getattr(gm, "named_parameters", None)
orig_named_buffers = getattr(gm, "named_buffers", None)
if not hasattr(gm, "_boxed_call") and (
orig_named_parameters is not None or orig_named_buffers is not None
):
gm = make_boxed_func(gm)
if orig_named_parameters is not None:
gm.named_parameters = orig_named_parameters
if orig_named_buffers is not None:
gm.named_buffers = orig_named_buffers
out = gm(args)
if only_fwd:
return out
if requires_bwd_pass(out):
loss = reduce_to_scalar_loss(out)
loss.backward()
return collect_results(gm, out, None, args)
def same_two_models(
gm,
opt_gm,
example_inputs,
only_fwd=False,
*,
require_fp64=False,
ignore_non_fp=False,
):
"""
Check two models have same accuracy.
require_fp64: if True, raise an error if we unable to calculate the fp64 reference
ignore_non_fp: if True, do not compare outputs which are not floating point. This
is mostly useful for the minifier (which wants to avoid quantizing floating point
error into integer/boolean error)
"""
from .eval_frame import OptimizedModule
from .testing import (
named_buffers_for_optimized_module,
named_parameters_for_optimized_module,
)
from .utils import same
if isinstance(gm, OptimizedModule):
gm.named_parameters = named_parameters_for_optimized_module(gm)
gm.named_buffers = named_buffers_for_optimized_module(gm)
if isinstance(opt_gm, OptimizedModule):
opt_gm.named_parameters = named_parameters_for_optimized_module(opt_gm)
opt_gm.named_buffers = named_buffers_for_optimized_module(opt_gm)
ref = run_fwd_maybe_bwd(gm, example_inputs, only_fwd)
fp64_ref = None
if config.same_two_models_use_fp64:
try:
fp64_model, fp64_examples = cast_to_fp64(
copy.deepcopy(gm), clone_inputs_retaining_gradness(example_inputs)
)
fp64_ref = run_fwd_maybe_bwd(fp64_model, fp64_examples, only_fwd)
except Exception:
if require_fp64:
raise RuntimeError("Could not generate fp64 outputs") # noqa: TRY200
log.warning("Could not generate fp64 outputs")
try:
res = run_fwd_maybe_bwd(opt_gm, example_inputs, only_fwd)
except Exception as e:
# This means that the minified graph is bad/exposes a different problem.
# As we are checking accuracy here, lets log the exception and return True.
log.exception(
"While minifying the program in accuracy minification mode, "
"ran into a runtime exception which is likely an unrelated issue."
" Skipping this graph."
)
return True
passing = same(
ref,
res,
fp64_ref,
tol=config.repro_tolerance,
equal_nan=True,
ignore_non_fp=ignore_non_fp,
)
return passing
def cast_dtype_args_to_fp64(model):
for node in model.graph.nodes:
if (
node.op == "call_function"
and node.target == torch.ops.prims.convert_element_type.default
):
assert len(node.args) == 2
if is_float_dtype(node.args[1]) and node.args[1] != torch.float64:
node.args = (node.args[0], torch.float64)
if node.op == "call_function":
dtype = node.kwargs.get("dtype")
if dtype is not None and is_float_dtype(dtype):
new_kwargs = dict(node.kwargs)
new_kwargs["dtype"] = torch.float64
node.kwargs = new_kwargs
model.graph.lint()
model.recompile()
return model
def cast_to(dtype, model, inputs):
from torch.utils._pytree import tree_map
model = model.to(dtype)
if dtype == torch.float64:
# If casting to fp64 for accuracy comparison, we need to
# replace dtype arguments embedded in the graph with fp64
model = cast_dtype_args_to_fp64(model)
inputs = tree_map(
lambda x: x.to(dtype)
if isinstance(x, torch.Tensor) and x.is_floating_point()
else x,
inputs,
)
return model, inputs
def cast_to_fp64(model, inputs):
return cast_to(torch.float64, model, inputs)
def backend_accuracy_fails(
gm,
example_inputs,
compiler_fn,
only_fwd=False,
*,
require_fp64=False,
ignore_non_fp=False,
):
try:
compiled_gm = compiler_fn(
copy.deepcopy(gm), clone_inputs_retaining_gradness(example_inputs)
)
return not same_two_models(
gm,
compiled_gm,
example_inputs,
only_fwd,
require_fp64=require_fp64,
ignore_non_fp=ignore_non_fp,
)
except Exception as e:
# This means that the minified graph is bad/exposes a different problem.
# As we are checking accuracy here, lets log the exception and return False.
log.exception(
"While minifying the program in accuracy minification mode, "
"ran into a runtime exception which is likely an unrelated issue."
" Skipping this graph"
)
return False
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# REPRO SUPPORT CODE
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# Helper functions for computing what the default values of tensor
# values should be. These all coincide with factory functions, e.g., torch.empty
def _stride_or_default(
stride: Optional["torch._prims_common.StrideType"],
*,
shape: "torch._prims_common.ShapeType",
) -> "torch._prims_common.StrideType":
return stride if stride is not None else utils.make_contiguous_strides_for(shape)
def _mk_defaulter(d: T) -> Callable[[Optional[T]], T]:
return lambda x: x if x is not None else d
_dtype_or_default = _mk_defaulter(torch.float32)
_device_or_default = _mk_defaulter(torch.device("cpu"))
_storage_offset_or_default = _mk_defaulter(0)
_requires_grad_or_default = _mk_defaulter(False)
_is_leaf_or_default = _mk_defaulter(False)
class NopInputReader:
def __init__(self):
self.total = 0
def storage(self, storage_hash, nbytes, *, device=None, dtype_hint=None):
self.total += 1
def tensor(self, *args, **kwargs):
pass
def symint(self, *args, **kwargs):
pass
# TODO: Support bundling the entire repro into a zip file for ease of
# transferring around
class InputReader:
def __init__(self, save_dir=None, *, pbar=None):
# If None, we will generate random data instead. It's important
# to natively support this use case as it will allow people to
# share repros without including the real data, if the problem
# reproduces even on random data.
if save_dir is None:
log.warning("no save_dir specified, will generate random data")
self.store = ContentStoreReader(save_dir) if save_dir is not None else None
self.args = []
self.pbar = pbar
def storage(self, storage_hash, nbytes, *, device=None, dtype_hint=None):
if self.pbar is not None:
self.pbar.update(1)
device = _device_or_default(device)
dtype_hint = _dtype_or_default(dtype_hint)
if self.store is not None and storage_hash is not None:
try:
storage = self.store.read_storage(storage_hash)
except FileNotFoundError:
pass
else:
if device != storage.device:
log.warning("device mismatch: %s != %s", device, storage.device)
# TODO: transfer it to the right device? But failing this
# way would be very mysterious! Would have been better
# not to store device in the serialized format...
return storage
log.warning("could not load %s, generating random data instead", storage_hash)
shape = (nbytes // dtype_hint.itemsize,)
stride = _stride_or_default(None, shape=shape)
return rand_strided(shape, stride, dtype_hint, device).untyped_storage()
def tensor(
self,
storage,
shape,
stride=None,
*,
storage_offset=None,
dtype=None,
requires_grad=None,
is_leaf=None,
**metadata,
):
stride = _stride_or_default(stride, shape=shape)
storage_offset = _storage_offset_or_default(storage_offset)
dtype = _dtype_or_default(dtype)
is_leaf = _is_leaf_or_default(is_leaf)
requires_grad = _requires_grad_or_default(requires_grad)
t = torch.tensor(
[], dtype=dtype, device=storage.device, requires_grad=requires_grad
)
with torch.no_grad():
t.set_(storage, storage_offset, shape, stride)
if not is_leaf:
# Fake up some autograd history in a very naughty way
with torch.enable_grad():
t = t.clone(memory_format=torch.preserve_format)
with torch.no_grad():
t.set_(storage, storage_offset, shape, stride)
assert torch._subclasses.meta_utils.safe_is_leaf(t) == is_leaf
torch._utils.set_tensor_metadata(t, metadata)
self.args.append(t)
return t # for BC
def symint(self, val):
self.args.append(val)
return val # for BC
# Here is our writer strategy:
# 1. We will stream all of the inputs to disk
# 2. You can now deterministically randomize the inputs, or reload
# the inputs from disk
# 3. You can YOLO run the script without the inputs, in which case
# we'll fill the inputs with random data and pray. This is the
# legacy behavior, but it's also useful if you want to find out
# if we're so broken even random inputs trigger it
# 4. We could offer an in process "check if the randomized thing
# works too" but this is delicate so we don't do it
class InputWriter:
def __init__(self, save_dir, *, stable_hash=False):
self._lines = []
# TODO: consider ensuring tensor and storage counters line up?
self.storage_counter = itertools.count()
self.save_dir = save_dir
self.store = (
ContentStoreWriter(save_dir, stable_hash=stable_hash)
if save_dir is not None
else None
)
self.seen_storages = {}
def lines(self):
r = [
"def load_args(reader):",
]
r.extend(f" {l}" for l in self._lines)
# In case we need to change the internal format of load_args
# in an FC-breaking way
r.append("load_args._version = 0")
return r
# Storages are untyped, but we need to initialize them with data if
# we don't have the real data, so we give a hint saying what kind
# of initialization may be appropriate
#
# If we had a FakeTensor, device_hint tells us what device should be
def storage(self, untyped_storage, *, dtype_hint=None, device_hint=None) -> str:
ws = StorageWeakRef(untyped_storage)
v = self.seen_storages.get(ws)
if v is not None:
return v
v = f"buf{next(self.storage_counter)}"
maybe_dtype_hint = ""
if _dtype_or_default(None) != _dtype_or_default(dtype_hint):
maybe_dtype_hint = f", dtype_hint={dtype_hint!r}"
# TODO: being optional on device is kind of pointless as the default
# is CPU but most repros we care about are CUDA
maybe_device = ""
device = untyped_storage.device
if device.type == "meta":
assert device_hint is not None
device = device_hint
if _device_or_default(None) != device:
maybe_device = f", device={device!r}"
nbytes = untyped_storage.nbytes()
storage_hash = None
if self.store is not None and untyped_storage.device.type != "meta":
storage_hash = self.store.write_storage(untyped_storage)
self._lines.append(
f"{v} = reader.storage({storage_hash!r}, {nbytes!r}{maybe_device}{maybe_dtype_hint})"
)
self.seen_storages[ws] = v
return v
def tensor(self, name, t) -> None:
storage = self.storage(
t.untyped_storage(), dtype_hint=t.dtype, device_hint=t.device
)
args = []
# NB: this is positional, must come first
if _stride_or_default(None, shape=t.shape) != t.stride():
args.append(str(tuple(t.stride())))
if _dtype_or_default(None) != t.dtype:
args.append(f"dtype={t.dtype!r}")
if _storage_offset_or_default(None) != t.storage_offset():
args.append(f"storage_offset={t.storage_offset()!r}")
tensor_metadata = torch._utils.get_tensor_metadata(t)
if tensor_metadata:
args.extend(f"{k}={v!r}" for k, v in tensor_metadata.items())
if _requires_grad_or_default(None) != t.requires_grad:
args.append(f"requires_grad={t.requires_grad!r}")
is_leaf = torch._subclasses.meta_utils.safe_is_leaf(t)
if _is_leaf_or_default(None) != is_leaf:
args.append(f"is_leaf={is_leaf!r}")
self._lines.append(
"reader.tensor("
+ ", ".join([storage, str(tuple(t.shape)), *args])
+ f") # {name}"
)
# TODO: this doesn't actually symint atm
def symint(self, name, val) -> None:
if isinstance(val, torch.SymInt):
val = val.node.hint
self._lines.append(f"reader.symint({val!r}) # {name}")
def aot_graph_input_parser(
func: Callable[[List[Tensor]], List[Tensor]],
device: str = "cuda",
sym_shapes: Optional[Dict[str, int]] = None,
default_sym_shape: Optional[int] = None,
) -> Dict[str, Any]:
"""
Takes in a function which has been printed with print_readable() and constructs kwargs to run it.
Handles Tensor inputs, Symints, and a graph module which might have tensor constants.
Consider a function `forward` defined as follows:
def forward(self, primals_1: "f32[1001, 6]", primals_2: "f32[s0]", primals_3: "Sym(s0)",):
_tensor_constant0: "i64[4190]" = self._tensor_constant0
# Further implementation
kwargs = aot_graph_input_parser(forward)
forward(**kwargs)
"""
from torch.fx.graph import dtype_abbrs
dtype_map = {value: key for key, value in dtype_abbrs.items()}
dtype_pattern = "|".join(dtype_abbrs.values())
# Extracting the source code from the function
source = inspect.getsource(func)
# Regular expressions
tensor_assignment_regex = rf"(_tensor_constant\d+): \"({dtype_pattern})\[\s*(.*?)\s*\]\" = self\.(_tensor_constant\d+)"
tensor_regex = rf"({dtype_pattern})\[\s*(.*?)\s*\]"
sym_shape_regex = r"Sym\((s\d+)\)"
class TensorContainer:
"Container for tensors as attributes"
pass
# Dictionary for tensors from annotations
kwargs: Dict[str, Any] = {}
sym_shapes = sym_shapes or {}
def get_sym_int(symint):
torch._check(
symint in sym_shapes or default_sym_shape is not None,
lambda: f"{symint} not in symbolic_shapes and default sym shape not passed in",
)
return sym_shapes.get(symint, default_sym_shape)
def gen_tensor(shape, dtype) -> Tensor:
# Resolve symbolic shapes to concrete values
resolved_shape = []
dynamic_dims = []
for i, dim in enumerate(shape):
dim = dim.strip()
if "s" in dim:
s = get_sym_int(dim)
resolved_shape.append(s)
dynamic_dims.append(i)
else:
resolved_shape.append(int(dim))
constructor = torch.randn if dtype.is_floating_point else torch.zeros
out = constructor(resolved_shape, dtype=dtype, device=device) # type: ignore[call-arg]
for d in dynamic_dims:
torch._dynamo.mark_dynamic(out, d)
return out
# Parse function annotations for tensor generation
annotations = func.__annotations__
for param, annotation in annotations.items():
# Skip 'return' annotation
if param == "return":
continue
match = re.search(tensor_regex, annotation)
if match:
data_type, shape_str = match.groups()
shape = tuple(shape_str.split(","))
dtype = dtype_map[data_type]
kwargs[param] = gen_tensor(shape, dtype)
match = re.search(sym_shape_regex, annotation)
if match:
kwargs[param] = get_sym_int(match.group(1))
if "self" in inspect.signature(func).parameters:
container = TensorContainer()
kwargs["self"] = container
for match in re.finditer(tensor_assignment_regex, source):
attr_name, data_type, shape_str, _ = match.groups()
shape = tuple(shape_str.split(","))
dtype = dtype_map[data_type]
setattr(container, attr_name, gen_tensor(shape, dtype))
return kwargs