200 lines
6.6 KiB
Python
200 lines
6.6 KiB
Python
|
import inspect
|
||
|
from typing import Any, Callable, Dict, Iterable, Optional, Tuple, Type, Union
|
||
|
|
||
|
import torch
|
||
|
from torch._streambase import _EventBase, _StreamBase
|
||
|
|
||
|
get_cuda_stream: Optional[Callable[[int], int]]
|
||
|
if torch.cuda._is_compiled():
|
||
|
from torch._C import _cuda_getCurrentRawStream as get_cuda_stream
|
||
|
else:
|
||
|
get_cuda_stream = None
|
||
|
|
||
|
_device_t = Union[torch.device, str, int, None]
|
||
|
|
||
|
# Recording the device properties in the main process but used in worker process.
|
||
|
caching_worker_device_properties: Dict[str, Any] = {}
|
||
|
caching_worker_current_devices: Dict[str, int] = {}
|
||
|
|
||
|
|
||
|
class DeviceInterfaceMeta(type):
|
||
|
def __new__(metacls, *args, **kwargs):
|
||
|
class_member = args[2]
|
||
|
if "Event" in class_member:
|
||
|
assert inspect.isclass(class_member["Event"]) and issubclass(
|
||
|
class_member["Event"], _EventBase
|
||
|
), "DeviceInterface member Event should be inherit from _EventBase"
|
||
|
if "Stream" in class_member:
|
||
|
assert inspect.isclass(class_member["Stream"]) and issubclass(
|
||
|
class_member["Stream"], _StreamBase
|
||
|
), "DeviceInterface member Stream should be inherit from _StreamBase"
|
||
|
return super().__new__(metacls, *args, **kwargs)
|
||
|
|
||
|
|
||
|
class DeviceInterface(metaclass=DeviceInterfaceMeta):
|
||
|
"""
|
||
|
This is a simple device runtime interface for Inductor. It enables custom
|
||
|
backends to be integrated with Inductor in a device-agnostic semantic.
|
||
|
"""
|
||
|
|
||
|
class device:
|
||
|
def __new__(cls, device: _device_t):
|
||
|
raise NotImplementedError()
|
||
|
|
||
|
class Worker:
|
||
|
"""
|
||
|
Worker API to query device properties that will work in multi processing
|
||
|
workers that cannot use the GPU APIs (due to processing fork() and
|
||
|
initialization time issues). Properties are recorded in the main process
|
||
|
before we fork the workers.
|
||
|
"""
|
||
|
|
||
|
@staticmethod
|
||
|
def set_device(device: int):
|
||
|
raise NotImplementedError()
|
||
|
|
||
|
@staticmethod
|
||
|
def current_device() -> int:
|
||
|
raise NotImplementedError()
|
||
|
|
||
|
@staticmethod
|
||
|
def get_device_properties(device: _device_t = None):
|
||
|
raise NotImplementedError()
|
||
|
|
||
|
@staticmethod
|
||
|
def current_device():
|
||
|
raise NotImplementedError()
|
||
|
|
||
|
@staticmethod
|
||
|
def set_device(device: _device_t):
|
||
|
raise NotImplementedError()
|
||
|
|
||
|
@staticmethod
|
||
|
def device_count():
|
||
|
raise NotImplementedError()
|
||
|
|
||
|
@staticmethod
|
||
|
def is_available() -> bool:
|
||
|
raise NotImplementedError()
|
||
|
|
||
|
@staticmethod
|
||
|
def stream(stream: torch.Stream):
|
||
|
raise NotImplementedError()
|
||
|
|
||
|
@staticmethod
|
||
|
def current_stream():
|
||
|
raise NotImplementedError()
|
||
|
|
||
|
@staticmethod
|
||
|
def set_stream(stream: torch.Stream):
|
||
|
raise NotImplementedError()
|
||
|
|
||
|
@staticmethod
|
||
|
def _set_stream_by_id(stream_id: int, device_index: int, device_type: int):
|
||
|
raise NotImplementedError()
|
||
|
|
||
|
@staticmethod
|
||
|
def get_raw_stream():
|
||
|
raise NotImplementedError()
|
||
|
|
||
|
@staticmethod
|
||
|
def synchronize(device: _device_t = None):
|
||
|
raise NotImplementedError()
|
||
|
|
||
|
@staticmethod
|
||
|
def get_device_properties(device: _device_t = None):
|
||
|
raise NotImplementedError()
|
||
|
|
||
|
@staticmethod
|
||
|
def get_compute_capability(device: _device_t = None):
|
||
|
raise NotImplementedError()
|
||
|
|
||
|
|
||
|
class CudaInterface(DeviceInterface):
|
||
|
device = torch.cuda.device
|
||
|
|
||
|
# register Event and Stream class into the backend interface
|
||
|
# make sure Event and Stream are implemented and inherited from the _EventBase and _StreamBase
|
||
|
Event = torch.cuda.Event
|
||
|
Stream = torch.cuda.Stream
|
||
|
|
||
|
class Worker:
|
||
|
@staticmethod
|
||
|
def set_device(device: int):
|
||
|
caching_worker_current_devices["cuda"] = device
|
||
|
|
||
|
@staticmethod
|
||
|
def current_device() -> int:
|
||
|
if "cuda" in caching_worker_current_devices:
|
||
|
return caching_worker_current_devices["cuda"]
|
||
|
return torch.cuda.current_device()
|
||
|
|
||
|
@staticmethod
|
||
|
def get_device_properties(device: _device_t = None):
|
||
|
if device is not None:
|
||
|
if isinstance(device, str):
|
||
|
device = torch.device(device)
|
||
|
assert device.type == "cuda"
|
||
|
if isinstance(device, torch.device):
|
||
|
device = device.index
|
||
|
if device is None:
|
||
|
device = CudaInterface.Worker.current_device()
|
||
|
|
||
|
if "cuda" not in caching_worker_device_properties:
|
||
|
device_prop = [
|
||
|
torch.cuda.get_device_properties(i)
|
||
|
for i in range(torch.cuda.device_count())
|
||
|
]
|
||
|
caching_worker_device_properties["cuda"] = device_prop
|
||
|
|
||
|
return caching_worker_device_properties["cuda"][device]
|
||
|
|
||
|
current_device = staticmethod(torch.cuda.current_device)
|
||
|
set_device = staticmethod(torch.cuda.set_device)
|
||
|
device_count = staticmethod(torch.cuda.device_count)
|
||
|
stream = staticmethod(torch.cuda.stream) # type: ignore[assignment]
|
||
|
current_stream = staticmethod(torch.cuda.current_stream)
|
||
|
set_stream = staticmethod(torch.cuda.set_stream) # type: ignore[assignment]
|
||
|
_set_stream_by_id = staticmethod(torch.cuda._set_stream_by_id) # type: ignore[assignment]
|
||
|
synchronize = staticmethod(torch.cuda.synchronize)
|
||
|
get_device_properties = staticmethod(torch.cuda.get_device_properties) # type: ignore[assignment]
|
||
|
get_raw_stream = staticmethod(get_cuda_stream) # type: ignore[arg-type]
|
||
|
|
||
|
# Can be mock patched by @patch decorator.
|
||
|
@staticmethod
|
||
|
def is_available() -> bool:
|
||
|
return torch.cuda.is_available()
|
||
|
|
||
|
@staticmethod
|
||
|
def get_compute_capability(device: _device_t = None):
|
||
|
major, min = torch.cuda.get_device_capability(device)
|
||
|
return major * 10 + min
|
||
|
|
||
|
|
||
|
device_interfaces: Dict[str, Type[DeviceInterface]] = {}
|
||
|
|
||
|
|
||
|
def register_interface_for_device(
|
||
|
device: Union[str, torch.device], device_interface: Type[DeviceInterface]
|
||
|
):
|
||
|
if isinstance(device, torch.device):
|
||
|
device = str(device)
|
||
|
device_interfaces[device] = device_interface
|
||
|
|
||
|
|
||
|
def get_interface_for_device(device: Union[str, torch.device]) -> Type[DeviceInterface]:
|
||
|
if isinstance(device, torch.device):
|
||
|
device = str(device)
|
||
|
if device in device_interfaces:
|
||
|
return device_interfaces[device]
|
||
|
raise NotImplementedError(f"No interface for device {device}")
|
||
|
|
||
|
|
||
|
def get_registered_device_interfaces() -> Iterable[Tuple[str, Type[DeviceInterface]]]:
|
||
|
return device_interfaces.items()
|
||
|
|
||
|
|
||
|
register_interface_for_device("cuda", CudaInterface)
|
||
|
for i in range(torch.cuda.device_count()):
|
||
|
register_interface_for_device(f"cuda:{i}", CudaInterface)
|