ai-content-maker/.venv/Lib/site-packages/torch/_refs/_conversions.py

119 lines
3.4 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
import torch
import torch._prims_common as utils
# Utilities should come BEFORE this import
from torch._decomp import register_decomposition
from torch._prims_common import TensorLikeType
from torch._prims_common.wrappers import out_wrapper
from torch._refs import _broadcast_shapes
# Data conversion references.
#
# Note: this module breaks the usual _refs to torch naming scheme where
# _refs.foo.bar is a ref for torch.foo.bar. The following definitions are not
# part of _refs/__init__.py to avoid name clashes with Python builtin types
# (like int).
__all__ = [
# dtypes
"bfloat16",
"bool",
"byte",
"cdouble",
"cfloat",
"chalf",
"char",
"double",
"float",
"half",
"int",
"long",
"short",
# misc
"complex",
"polar",
]
def _make_conversion_method(name: str, dtype: torch.dtype):
def fn(
self: TensorLikeType, memory_format: torch.memory_format = torch.preserve_format
) -> TensorLikeType:
return self.to(dtype, memory_format=memory_format) # type: ignore[call-overload]
fn.__name__ = name
return fn
bfloat16 = _make_conversion_method("bfloat16", torch.bfloat16)
bool = _make_conversion_method("bool", torch.bool)
byte = _make_conversion_method("byte", torch.uint8)
cdouble = _make_conversion_method("cdouble", torch.cdouble)
cfloat = _make_conversion_method("cfloat", torch.cfloat)
chalf = _make_conversion_method("chalf", torch.complex32)
char = _make_conversion_method("char", torch.int8)
double = _make_conversion_method("double", torch.double)
float = _make_conversion_method("float", torch.float)
half = _make_conversion_method("half", torch.half)
int = _make_conversion_method("int", torch.int)
long = _make_conversion_method("long", torch.long)
short = _make_conversion_method("short", torch.short)
@register_decomposition(torch._ops.ops.aten.complex)
# Note: complex has type promotion tests disabled due to different semantics.
# exact_dtype is for compat with complex_check_dtype from core.
@out_wrapper(exact_dtype=True)
def complex(real: TensorLikeType, imag: TensorLikeType) -> TensorLikeType:
allowed_dtypes = (torch.float32, torch.float64, torch.float16)
torch._check(
real.dtype in allowed_dtypes and imag.dtype in allowed_dtypes,
lambda: (
f"Expected both inputs to be Half, Float or Double tensors but got "
f"{real.dtype} and {imag.dtype}"
),
)
torch._check(
real.dtype == imag.dtype,
lambda: (
f"Expected object of scalar type {real.dtype} but got "
f"scalar type {imag.dtype} for second argument"
),
)
result_dtype = utils.corresponding_complex_dtype(real.dtype) # type: ignore[arg-type]
common_shape = _broadcast_shapes(real.shape, imag.shape)
result = real.new_empty(
common_shape,
dtype=result_dtype,
layout=real.layout,
device=real.device,
# pin_memory=real.is_pinned(), # NYI
)
result.real = real
result.imag = imag
return result
@register_decomposition(torch._ops.ops.aten.polar)
# Note: polar has type promotion tests disabled due to different semantics.
# exact_dtype is for compat with complex_check_dtype from core.
@out_wrapper(exact_dtype=True)
def polar(abs: TensorLikeType, angle: TensorLikeType) -> TensorLikeType:
result = torch.complex(abs, angle)
result.real = abs * torch.cos(angle)
result.imag = abs * torch.sin(angle)
return result