ai-content-maker/.venv/Lib/site-packages/transformers/models/pop2piano/configuration_pop2piano.py

129 lines
5.9 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Pop2Piano model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
from ..deprecated._archive_maps import POP2PIANO_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
class Pop2PianoConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Pop2PianoForConditionalGeneration`]. It is used
to instantiate a Pop2PianoForConditionalGeneration model according to the specified arguments, defining the model
architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the
Pop2Piano [sweetcocoa/pop2piano](https://huggingface.co/sweetcocoa/pop2piano) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Arguments:
vocab_size (`int`, *optional*, defaults to 2400):
Vocabulary size of the `Pop2PianoForConditionalGeneration` model. Defines the number of different tokens
that can be represented by the `inputs_ids` passed when calling [`Pop2PianoForConditionalGeneration`].
composer_vocab_size (`int`, *optional*, defaults to 21):
Denotes the number of composers.
d_model (`int`, *optional*, defaults to 512):
Size of the encoder layers and the pooler layer.
d_kv (`int`, *optional*, defaults to 64):
Size of the key, query, value projections per attention head. The `inner_dim` of the projection layer will
be defined as `num_heads * d_kv`.
d_ff (`int`, *optional*, defaults to 2048):
Size of the intermediate feed forward layer in each `Pop2PianoBlock`.
num_layers (`int`, *optional*, defaults to 6):
Number of hidden layers in the Transformer encoder.
num_decoder_layers (`int`, *optional*):
Number of hidden layers in the Transformer decoder. Will use the same value as `num_layers` if not set.
num_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer encoder.
relative_attention_num_buckets (`int`, *optional*, defaults to 32):
The number of buckets to use for each attention layer.
relative_attention_max_distance (`int`, *optional*, defaults to 128):
The maximum distance of the longer sequences for the bucket separation.
dropout_rate (`float`, *optional*, defaults to 0.1):
The ratio for all dropout layers.
layer_norm_epsilon (`float`, *optional*, defaults to 1e-6):
The epsilon used by the layer normalization layers.
initializer_factor (`float`, *optional*, defaults to 1.0):
A factor for initializing all weight matrices (should be kept to 1.0, used internally for initialization
testing).
feed_forward_proj (`string`, *optional*, defaults to `"gated-gelu"`):
Type of feed forward layer to be used. Should be one of `"relu"` or `"gated-gelu"`.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
dense_act_fn (`string`, *optional*, defaults to `"relu"`):
Type of Activation Function to be used in `Pop2PianoDenseActDense` and in `Pop2PianoDenseGatedActDense`.
"""
model_type = "pop2piano"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=2400,
composer_vocab_size=21,
d_model=512,
d_kv=64,
d_ff=2048,
num_layers=6,
num_decoder_layers=None,
num_heads=8,
relative_attention_num_buckets=32,
relative_attention_max_distance=128,
dropout_rate=0.1,
layer_norm_epsilon=1e-6,
initializer_factor=1.0,
feed_forward_proj="gated-gelu", # noqa
is_encoder_decoder=True,
use_cache=True,
pad_token_id=0,
eos_token_id=1,
dense_act_fn="relu",
**kwargs,
):
self.vocab_size = vocab_size
self.composer_vocab_size = composer_vocab_size
self.d_model = d_model
self.d_kv = d_kv
self.d_ff = d_ff
self.num_layers = num_layers
self.num_decoder_layers = num_decoder_layers if num_decoder_layers is not None else self.num_layers
self.num_heads = num_heads
self.relative_attention_num_buckets = relative_attention_num_buckets
self.relative_attention_max_distance = relative_attention_max_distance
self.dropout_rate = dropout_rate
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_factor = initializer_factor
self.feed_forward_proj = feed_forward_proj
self.use_cache = use_cache
self.dense_act_fn = dense_act_fn
self.is_gated_act = self.feed_forward_proj.split("-")[0] == "gated"
self.hidden_size = self.d_model
self.num_attention_heads = num_heads
self.num_hidden_layers = num_layers
super().__init__(
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
**kwargs,
)