274 lines
11 KiB
Python
274 lines
11 KiB
Python
|
from typing import Dict
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
|
||
|
from .base import GenericTensor, Pipeline, PipelineException, build_pipeline_init_args
|
||
|
|
||
|
|
||
|
if is_tf_available():
|
||
|
import tensorflow as tf
|
||
|
|
||
|
from ..tf_utils import stable_softmax
|
||
|
|
||
|
|
||
|
if is_torch_available():
|
||
|
import torch
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
|
||
|
@add_end_docstrings(
|
||
|
build_pipeline_init_args(has_tokenizer=True),
|
||
|
r"""
|
||
|
top_k (`int`, defaults to 5):
|
||
|
The number of predictions to return.
|
||
|
targets (`str` or `List[str]`, *optional*):
|
||
|
When passed, the model will limit the scores to the passed targets instead of looking up in the whole
|
||
|
vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting
|
||
|
token will be used (with a warning, and that might be slower).
|
||
|
tokenizer_kwargs (`dict`, *optional*):
|
||
|
Additional dictionary of keyword arguments passed along to the tokenizer.""",
|
||
|
)
|
||
|
class FillMaskPipeline(Pipeline):
|
||
|
"""
|
||
|
Masked language modeling prediction pipeline using any `ModelWithLMHead`. See the [masked language modeling
|
||
|
examples](../task_summary#masked-language-modeling) for more information.
|
||
|
|
||
|
Example:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import pipeline
|
||
|
|
||
|
>>> fill_masker = pipeline(model="google-bert/bert-base-uncased")
|
||
|
>>> fill_masker("This is a simple [MASK].")
|
||
|
[{'score': 0.042, 'token': 3291, 'token_str': 'problem', 'sequence': 'this is a simple problem.'}, {'score': 0.031, 'token': 3160, 'token_str': 'question', 'sequence': 'this is a simple question.'}, {'score': 0.03, 'token': 8522, 'token_str': 'equation', 'sequence': 'this is a simple equation.'}, {'score': 0.027, 'token': 2028, 'token_str': 'one', 'sequence': 'this is a simple one.'}, {'score': 0.024, 'token': 3627, 'token_str': 'rule', 'sequence': 'this is a simple rule.'}]
|
||
|
```
|
||
|
|
||
|
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)
|
||
|
|
||
|
This mask filling pipeline can currently be loaded from [`pipeline`] using the following task identifier:
|
||
|
`"fill-mask"`.
|
||
|
|
||
|
The models that this pipeline can use are models that have been trained with a masked language modeling objective,
|
||
|
which includes the bi-directional models in the library. See the up-to-date list of available models on
|
||
|
[huggingface.co/models](https://huggingface.co/models?filter=fill-mask).
|
||
|
|
||
|
<Tip>
|
||
|
|
||
|
This pipeline only works for inputs with exactly one token masked. Experimental: We added support for multiple
|
||
|
masks. The returned values are raw model output, and correspond to disjoint probabilities where one might expect
|
||
|
joint probabilities (See [discussion](https://github.com/huggingface/transformers/pull/10222)).
|
||
|
|
||
|
</Tip>
|
||
|
|
||
|
<Tip>
|
||
|
|
||
|
This pipeline now supports tokenizer_kwargs. For example try:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import pipeline
|
||
|
|
||
|
>>> fill_masker = pipeline(model="google-bert/bert-base-uncased")
|
||
|
>>> tokenizer_kwargs = {"truncation": True}
|
||
|
>>> fill_masker(
|
||
|
... "This is a simple [MASK]. " + "...with a large amount of repeated text appended. " * 100,
|
||
|
... tokenizer_kwargs=tokenizer_kwargs,
|
||
|
... )
|
||
|
```
|
||
|
|
||
|
|
||
|
</Tip>
|
||
|
|
||
|
|
||
|
"""
|
||
|
|
||
|
def get_masked_index(self, input_ids: GenericTensor) -> np.ndarray:
|
||
|
if self.framework == "tf":
|
||
|
masked_index = tf.where(input_ids == self.tokenizer.mask_token_id).numpy()
|
||
|
elif self.framework == "pt":
|
||
|
masked_index = torch.nonzero(input_ids == self.tokenizer.mask_token_id, as_tuple=False)
|
||
|
else:
|
||
|
raise ValueError("Unsupported framework")
|
||
|
return masked_index
|
||
|
|
||
|
def _ensure_exactly_one_mask_token(self, input_ids: GenericTensor) -> np.ndarray:
|
||
|
masked_index = self.get_masked_index(input_ids)
|
||
|
numel = np.prod(masked_index.shape)
|
||
|
if numel < 1:
|
||
|
raise PipelineException(
|
||
|
"fill-mask",
|
||
|
self.model.base_model_prefix,
|
||
|
f"No mask_token ({self.tokenizer.mask_token}) found on the input",
|
||
|
)
|
||
|
|
||
|
def ensure_exactly_one_mask_token(self, model_inputs: GenericTensor):
|
||
|
if isinstance(model_inputs, list):
|
||
|
for model_input in model_inputs:
|
||
|
self._ensure_exactly_one_mask_token(model_input["input_ids"][0])
|
||
|
else:
|
||
|
for input_ids in model_inputs["input_ids"]:
|
||
|
self._ensure_exactly_one_mask_token(input_ids)
|
||
|
|
||
|
def preprocess(
|
||
|
self, inputs, return_tensors=None, tokenizer_kwargs=None, **preprocess_parameters
|
||
|
) -> Dict[str, GenericTensor]:
|
||
|
if return_tensors is None:
|
||
|
return_tensors = self.framework
|
||
|
if tokenizer_kwargs is None:
|
||
|
tokenizer_kwargs = {}
|
||
|
|
||
|
model_inputs = self.tokenizer(inputs, return_tensors=return_tensors, **tokenizer_kwargs)
|
||
|
self.ensure_exactly_one_mask_token(model_inputs)
|
||
|
return model_inputs
|
||
|
|
||
|
def _forward(self, model_inputs):
|
||
|
model_outputs = self.model(**model_inputs)
|
||
|
model_outputs["input_ids"] = model_inputs["input_ids"]
|
||
|
return model_outputs
|
||
|
|
||
|
def postprocess(self, model_outputs, top_k=5, target_ids=None):
|
||
|
# Cap top_k if there are targets
|
||
|
if target_ids is not None and target_ids.shape[0] < top_k:
|
||
|
top_k = target_ids.shape[0]
|
||
|
input_ids = model_outputs["input_ids"][0]
|
||
|
outputs = model_outputs["logits"]
|
||
|
|
||
|
if self.framework == "tf":
|
||
|
masked_index = tf.where(input_ids == self.tokenizer.mask_token_id).numpy()[:, 0]
|
||
|
|
||
|
outputs = outputs.numpy()
|
||
|
|
||
|
logits = outputs[0, masked_index, :]
|
||
|
probs = stable_softmax(logits, axis=-1)
|
||
|
if target_ids is not None:
|
||
|
probs = tf.gather_nd(tf.squeeze(probs, 0), target_ids.reshape(-1, 1))
|
||
|
probs = tf.expand_dims(probs, 0)
|
||
|
|
||
|
topk = tf.math.top_k(probs, k=top_k)
|
||
|
values, predictions = topk.values.numpy(), topk.indices.numpy()
|
||
|
else:
|
||
|
masked_index = torch.nonzero(input_ids == self.tokenizer.mask_token_id, as_tuple=False).squeeze(-1)
|
||
|
# Fill mask pipeline supports only one ${mask_token} per sample
|
||
|
|
||
|
logits = outputs[0, masked_index, :]
|
||
|
probs = logits.softmax(dim=-1)
|
||
|
if target_ids is not None:
|
||
|
probs = probs[..., target_ids]
|
||
|
|
||
|
values, predictions = probs.topk(top_k)
|
||
|
|
||
|
result = []
|
||
|
single_mask = values.shape[0] == 1
|
||
|
for i, (_values, _predictions) in enumerate(zip(values.tolist(), predictions.tolist())):
|
||
|
row = []
|
||
|
for v, p in zip(_values, _predictions):
|
||
|
# Copy is important since we're going to modify this array in place
|
||
|
tokens = input_ids.numpy().copy()
|
||
|
if target_ids is not None:
|
||
|
p = target_ids[p].tolist()
|
||
|
|
||
|
tokens[masked_index[i]] = p
|
||
|
# Filter padding out:
|
||
|
tokens = tokens[np.where(tokens != self.tokenizer.pad_token_id)]
|
||
|
# Originally we skip special tokens to give readable output.
|
||
|
# For multi masks though, the other [MASK] would be removed otherwise
|
||
|
# making the output look odd, so we add them back
|
||
|
sequence = self.tokenizer.decode(tokens, skip_special_tokens=single_mask)
|
||
|
proposition = {"score": v, "token": p, "token_str": self.tokenizer.decode([p]), "sequence": sequence}
|
||
|
row.append(proposition)
|
||
|
result.append(row)
|
||
|
if single_mask:
|
||
|
return result[0]
|
||
|
return result
|
||
|
|
||
|
def get_target_ids(self, targets, top_k=None):
|
||
|
if isinstance(targets, str):
|
||
|
targets = [targets]
|
||
|
try:
|
||
|
vocab = self.tokenizer.get_vocab()
|
||
|
except Exception:
|
||
|
vocab = {}
|
||
|
target_ids = []
|
||
|
for target in targets:
|
||
|
id_ = vocab.get(target, None)
|
||
|
if id_ is None:
|
||
|
input_ids = self.tokenizer(
|
||
|
target,
|
||
|
add_special_tokens=False,
|
||
|
return_attention_mask=False,
|
||
|
return_token_type_ids=False,
|
||
|
max_length=1,
|
||
|
truncation=True,
|
||
|
)["input_ids"]
|
||
|
if len(input_ids) == 0:
|
||
|
logger.warning(
|
||
|
f"The specified target token `{target}` does not exist in the model vocabulary. "
|
||
|
"We cannot replace it with anything meaningful, ignoring it"
|
||
|
)
|
||
|
continue
|
||
|
id_ = input_ids[0]
|
||
|
# XXX: If users encounter this pass
|
||
|
# it becomes pretty slow, so let's make sure
|
||
|
# The warning enables them to fix the input to
|
||
|
# get faster performance.
|
||
|
logger.warning(
|
||
|
f"The specified target token `{target}` does not exist in the model vocabulary. "
|
||
|
f"Replacing with `{self.tokenizer.convert_ids_to_tokens(id_)}`."
|
||
|
)
|
||
|
target_ids.append(id_)
|
||
|
target_ids = list(set(target_ids))
|
||
|
if len(target_ids) == 0:
|
||
|
raise ValueError("At least one target must be provided when passed.")
|
||
|
target_ids = np.array(target_ids)
|
||
|
return target_ids
|
||
|
|
||
|
def _sanitize_parameters(self, top_k=None, targets=None, tokenizer_kwargs=None):
|
||
|
preprocess_params = {}
|
||
|
|
||
|
if tokenizer_kwargs is not None:
|
||
|
preprocess_params["tokenizer_kwargs"] = tokenizer_kwargs
|
||
|
|
||
|
postprocess_params = {}
|
||
|
|
||
|
if targets is not None:
|
||
|
target_ids = self.get_target_ids(targets, top_k)
|
||
|
postprocess_params["target_ids"] = target_ids
|
||
|
|
||
|
if top_k is not None:
|
||
|
postprocess_params["top_k"] = top_k
|
||
|
|
||
|
if self.tokenizer.mask_token_id is None:
|
||
|
raise PipelineException(
|
||
|
"fill-mask", self.model.base_model_prefix, "The tokenizer does not define a `mask_token`."
|
||
|
)
|
||
|
return preprocess_params, {}, postprocess_params
|
||
|
|
||
|
def __call__(self, inputs, *args, **kwargs):
|
||
|
"""
|
||
|
Fill the masked token in the text(s) given as inputs.
|
||
|
|
||
|
Args:
|
||
|
args (`str` or `List[str]`):
|
||
|
One or several texts (or one list of prompts) with masked tokens.
|
||
|
targets (`str` or `List[str]`, *optional*):
|
||
|
When passed, the model will limit the scores to the passed targets instead of looking up in the whole
|
||
|
vocab. If the provided targets are not in the model vocab, they will be tokenized and the first
|
||
|
resulting token will be used (with a warning, and that might be slower).
|
||
|
top_k (`int`, *optional*):
|
||
|
When passed, overrides the number of predictions to return.
|
||
|
|
||
|
Return:
|
||
|
A list or a list of list of `dict`: Each result comes as list of dictionaries with the following keys:
|
||
|
|
||
|
- **sequence** (`str`) -- The corresponding input with the mask token prediction.
|
||
|
- **score** (`float`) -- The corresponding probability.
|
||
|
- **token** (`int`) -- The predicted token id (to replace the masked one).
|
||
|
- **token_str** (`str`) -- The predicted token (to replace the masked one).
|
||
|
"""
|
||
|
outputs = super().__call__(inputs, **kwargs)
|
||
|
if isinstance(inputs, list) and len(inputs) == 1:
|
||
|
return outputs[0]
|
||
|
return outputs
|