import os from dataclasses import dataclass, field from coqpit import Coqpit from trainer import TrainerArgs, get_last_checkpoint from trainer.io import copy_model_files from trainer.logging import logger_factory from trainer.logging.console_logger import ConsoleLogger from TTS.config import load_config, register_config from TTS.tts.utils.text.characters import parse_symbols from TTS.utils.generic_utils import get_experiment_folder_path, get_git_branch @dataclass class TrainArgs(TrainerArgs): config_path: str = field(default=None, metadata={"help": "Path to the config file."}) def getarguments(): train_config = TrainArgs() parser = train_config.init_argparse(arg_prefix="") return parser def process_args(args, config=None): """Process parsed comand line arguments and initialize the config if not provided. Args: args (argparse.Namespace or dict like): Parsed input arguments. config (Coqpit): Model config. If none, it is generated from `args`. Defaults to None. Returns: c (TTS.utils.io.AttrDict): Config paramaters. out_path (str): Path to save models and logging. audio_path (str): Path to save generated test audios. c_logger (TTS.utils.console_logger.ConsoleLogger): Class that does logging to the console. dashboard_logger (WandbLogger or TensorboardLogger): Class that does the dashboard Logging TODO: - Interactive config definition. """ if isinstance(args, tuple): args, coqpit_overrides = args if args.continue_path: # continue a previous training from its output folder experiment_path = args.continue_path args.config_path = os.path.join(args.continue_path, "config.json") args.restore_path, best_model = get_last_checkpoint(args.continue_path) if not args.best_path: args.best_path = best_model # init config if not already defined if config is None: if args.config_path: # init from a file config = load_config(args.config_path) else: # init from console args from TTS.config.shared_configs import BaseTrainingConfig # pylint: disable=import-outside-toplevel config_base = BaseTrainingConfig() config_base.parse_known_args(coqpit_overrides) config = register_config(config_base.model)() # override values from command-line args config.parse_known_args(coqpit_overrides, relaxed_parser=True) experiment_path = args.continue_path if not experiment_path: experiment_path = get_experiment_folder_path(config.output_path, config.run_name) audio_path = os.path.join(experiment_path, "test_audios") config.output_log_path = experiment_path # setup rank 0 process in distributed training dashboard_logger = None if args.rank == 0: new_fields = {} if args.restore_path: new_fields["restore_path"] = args.restore_path new_fields["github_branch"] = get_git_branch() # if model characters are not set in the config file # save the default set to the config file for future # compatibility. if config.has("characters") and config.characters is None: used_characters = parse_symbols() new_fields["characters"] = used_characters copy_model_files(config, experiment_path, new_fields) dashboard_logger = logger_factory(config, experiment_path) c_logger = ConsoleLogger() return config, experiment_path, audio_path, c_logger, dashboard_logger def init_arguments(): train_config = TrainArgs() parser = train_config.init_argparse(arg_prefix="") return parser def init_training(config: Coqpit = None): """Initialization of a training run.""" parser = init_arguments() args = parser.parse_known_args() config, OUT_PATH, AUDIO_PATH, c_logger, dashboard_logger = process_args(args, config) return args[0], config, OUT_PATH, AUDIO_PATH, c_logger, dashboard_logger