from typing import Optional, Dict, cast import oneflow as flow from . import RearrangeMixin, ReduceMixin from ._einmix import _EinmixMixin __author__ = "Tianhe Ren & Depeng Liang" class Rearrange(RearrangeMixin, flow.nn.Module): def forward(self, input): return self._apply_recipe(input) class Reduce(ReduceMixin, flow.nn.Module): def forward(self, input): return self._apply_recipe(input) class EinMix(_EinmixMixin, flow.nn.Module): def _create_parameters(self, weight_shape, weight_bound, bias_shape, bias_bound): self.weight = flow.nn.Parameter( flow.zeros(weight_shape).uniform_(-weight_bound, weight_bound), requires_grad=True ) if bias_shape is not None: self.bias = flow.nn.Parameter(flow.zeros(bias_shape).uniform_(-bias_bound, bias_bound), requires_grad=True) else: self.bias = None def _create_rearrange_layers( self, pre_reshape_pattern: Optional[str], pre_reshape_lengths: Optional[Dict], post_reshape_pattern: Optional[str], post_reshape_lengths: Optional[Dict], ): self.pre_rearrange = None if pre_reshape_pattern is not None: self.pre_rearrange = Rearrange(pre_reshape_pattern, **cast(dict, pre_reshape_lengths)) self.post_rearrange = None if post_reshape_pattern is not None: self.post_rearrange = Rearrange(post_reshape_pattern, **cast(dict, post_reshape_lengths)) def forward(self, input): if self.pre_rearrange is not None: input = self.pre_rearrange(input) result = flow.einsum(self.einsum_pattern, input, self.weight) if self.bias is not None: result += self.bias if self.post_rearrange is not None: result = self.post_rearrange(result) return result