# Natural Language Toolkit: Language Model Unit Tests # # Copyright (C) 2001-2023 NLTK Project # Author: Ilia Kurenkov # Manu Joseph # URL: # For license information, see LICENSE.TXT """Smoothing algorithms for language modeling. According to Chen & Goodman 1995 these should work with both Backoff and Interpolation. """ from operator import methodcaller from nltk.lm.api import Smoothing from nltk.probability import ConditionalFreqDist def _count_values_gt_zero(distribution): """Count values that are greater than zero in a distribution. Assumes distribution is either a mapping with counts as values or an instance of `nltk.ConditionalFreqDist`. """ as_count = ( methodcaller("N") if isinstance(distribution, ConditionalFreqDist) else lambda count: count ) # We explicitly check that values are > 0 to guard against negative counts. return sum( 1 for dist_or_count in distribution.values() if as_count(dist_or_count) > 0 ) class WittenBell(Smoothing): """Witten-Bell smoothing.""" def __init__(self, vocabulary, counter, **kwargs): super().__init__(vocabulary, counter, **kwargs) def alpha_gamma(self, word, context): alpha = self.counts[context].freq(word) gamma = self._gamma(context) return (1.0 - gamma) * alpha, gamma def _gamma(self, context): n_plus = _count_values_gt_zero(self.counts[context]) return n_plus / (n_plus + self.counts[context].N()) def unigram_score(self, word): return self.counts.unigrams.freq(word) class AbsoluteDiscounting(Smoothing): """Smoothing with absolute discount.""" def __init__(self, vocabulary, counter, discount=0.75, **kwargs): super().__init__(vocabulary, counter, **kwargs) self.discount = discount def alpha_gamma(self, word, context): alpha = ( max(self.counts[context][word] - self.discount, 0) / self.counts[context].N() ) gamma = self._gamma(context) return alpha, gamma def _gamma(self, context): n_plus = _count_values_gt_zero(self.counts[context]) return (self.discount * n_plus) / self.counts[context].N() def unigram_score(self, word): return self.counts.unigrams.freq(word) class KneserNey(Smoothing): """Kneser-Ney Smoothing. This is an extension of smoothing with a discount. Resources: - https://pages.ucsd.edu/~rlevy/lign256/winter2008/kneser_ney_mini_example.pdf - https://www.youtube.com/watch?v=ody1ysUTD7o - https://medium.com/@dennyc/a-simple-numerical-example-for-kneser-ney-smoothing-nlp-4600addf38b8 - https://www.cl.uni-heidelberg.de/courses/ss15/smt/scribe6.pdf - https://www-i6.informatik.rwth-aachen.de/publications/download/951/Kneser-ICASSP-1995.pdf """ def __init__(self, vocabulary, counter, order, discount=0.1, **kwargs): super().__init__(vocabulary, counter, **kwargs) self.discount = discount self._order = order def unigram_score(self, word): word_continuation_count, total_count = self._continuation_counts(word) return word_continuation_count / total_count def alpha_gamma(self, word, context): prefix_counts = self.counts[context] word_continuation_count, total_count = ( (prefix_counts[word], prefix_counts.N()) if len(context) + 1 == self._order else self._continuation_counts(word, context) ) alpha = max(word_continuation_count - self.discount, 0.0) / total_count gamma = self.discount * _count_values_gt_zero(prefix_counts) / total_count return alpha, gamma def _continuation_counts(self, word, context=tuple()): """Count continuations that end with context and word. Continuations track unique ngram "types", regardless of how many instances were observed for each "type". This is different than raw ngram counts which track number of instances. """ higher_order_ngrams_with_context = ( counts for prefix_ngram, counts in self.counts[len(context) + 2].items() if prefix_ngram[1:] == context ) higher_order_ngrams_with_word_count, total = 0, 0 for counts in higher_order_ngrams_with_context: higher_order_ngrams_with_word_count += int(counts[word] > 0) total += _count_values_gt_zero(counts) return higher_order_ngrams_with_word_count, total