""" Unit tests for nltk.classify. See also: nltk/test/classify.doctest """ import pytest from nltk import classify TRAIN = [ (dict(a=1, b=1, c=1), "y"), (dict(a=1, b=1, c=1), "x"), (dict(a=1, b=1, c=0), "y"), (dict(a=0, b=1, c=1), "x"), (dict(a=0, b=1, c=1), "y"), (dict(a=0, b=0, c=1), "y"), (dict(a=0, b=1, c=0), "x"), (dict(a=0, b=0, c=0), "x"), (dict(a=0, b=1, c=1), "y"), ] TEST = [ (dict(a=1, b=0, c=1)), # unseen (dict(a=1, b=0, c=0)), # unseen (dict(a=0, b=1, c=1)), # seen 3 times, labels=y,y,x (dict(a=0, b=1, c=0)), # seen 1 time, label=x ] RESULTS = [(0.16, 0.84), (0.46, 0.54), (0.41, 0.59), (0.76, 0.24)] def assert_classifier_correct(algorithm): try: classifier = classify.MaxentClassifier.train( TRAIN, algorithm, trace=0, max_iter=1000 ) except (LookupError, AttributeError) as e: pytest.skip(str(e)) for (px, py), featureset in zip(RESULTS, TEST): pdist = classifier.prob_classify(featureset) assert abs(pdist.prob("x") - px) < 1e-2, (pdist.prob("x"), px) assert abs(pdist.prob("y") - py) < 1e-2, (pdist.prob("y"), py) def test_megam(): assert_classifier_correct("MEGAM") def test_tadm(): assert_classifier_correct("TADM")