""" Tests for IBM Model 1 training methods """ import unittest from collections import defaultdict from nltk.translate import AlignedSent, IBMModel, IBMModel1 from nltk.translate.ibm_model import AlignmentInfo class TestIBMModel1(unittest.TestCase): def test_set_uniform_translation_probabilities(self): # arrange corpus = [ AlignedSent(["ham", "eggs"], ["schinken", "schinken", "eier"]), AlignedSent(["spam", "spam", "spam", "spam"], ["spam", "spam"]), ] model1 = IBMModel1(corpus, 0) # act model1.set_uniform_probabilities(corpus) # assert # expected_prob = 1.0 / (target vocab size + 1) self.assertEqual(model1.translation_table["ham"]["eier"], 1.0 / 3) self.assertEqual(model1.translation_table["eggs"][None], 1.0 / 3) def test_set_uniform_translation_probabilities_of_non_domain_values(self): # arrange corpus = [ AlignedSent(["ham", "eggs"], ["schinken", "schinken", "eier"]), AlignedSent(["spam", "spam", "spam", "spam"], ["spam", "spam"]), ] model1 = IBMModel1(corpus, 0) # act model1.set_uniform_probabilities(corpus) # assert # examine target words that are not in the training data domain self.assertEqual(model1.translation_table["parrot"]["eier"], IBMModel.MIN_PROB) def test_prob_t_a_given_s(self): # arrange src_sentence = ["ich", "esse", "ja", "gern", "räucherschinken"] trg_sentence = ["i", "love", "to", "eat", "smoked", "ham"] corpus = [AlignedSent(trg_sentence, src_sentence)] alignment_info = AlignmentInfo( (0, 1, 4, 0, 2, 5, 5), [None] + src_sentence, ["UNUSED"] + trg_sentence, None, ) translation_table = defaultdict(lambda: defaultdict(float)) translation_table["i"]["ich"] = 0.98 translation_table["love"]["gern"] = 0.98 translation_table["to"][None] = 0.98 translation_table["eat"]["esse"] = 0.98 translation_table["smoked"]["räucherschinken"] = 0.98 translation_table["ham"]["räucherschinken"] = 0.98 model1 = IBMModel1(corpus, 0) model1.translation_table = translation_table # act probability = model1.prob_t_a_given_s(alignment_info) # assert lexical_translation = 0.98 * 0.98 * 0.98 * 0.98 * 0.98 * 0.98 expected_probability = lexical_translation self.assertEqual(round(probability, 4), round(expected_probability, 4))