""" Tests for IBM Model 3 training methods """ import unittest from collections import defaultdict from nltk.translate import AlignedSent, IBMModel, IBMModel3 from nltk.translate.ibm_model import AlignmentInfo class TestIBMModel3(unittest.TestCase): def test_set_uniform_distortion_probabilities(self): # arrange corpus = [ AlignedSent(["ham", "eggs"], ["schinken", "schinken", "eier"]), AlignedSent(["spam", "spam", "spam", "spam"], ["spam", "spam"]), ] model3 = IBMModel3(corpus, 0) # act model3.set_uniform_probabilities(corpus) # assert # expected_prob = 1.0 / length of target sentence self.assertEqual(model3.distortion_table[1][0][3][2], 1.0 / 2) self.assertEqual(model3.distortion_table[4][2][2][4], 1.0 / 4) def test_set_uniform_distortion_probabilities_of_non_domain_values(self): # arrange corpus = [ AlignedSent(["ham", "eggs"], ["schinken", "schinken", "eier"]), AlignedSent(["spam", "spam", "spam", "spam"], ["spam", "spam"]), ] model3 = IBMModel3(corpus, 0) # act model3.set_uniform_probabilities(corpus) # assert # examine i and j values that are not in the training data domain self.assertEqual(model3.distortion_table[0][0][3][2], IBMModel.MIN_PROB) self.assertEqual(model3.distortion_table[9][2][2][4], IBMModel.MIN_PROB) self.assertEqual(model3.distortion_table[2][9][2][4], IBMModel.MIN_PROB) def test_prob_t_a_given_s(self): # arrange src_sentence = ["ich", "esse", "ja", "gern", "räucherschinken"] trg_sentence = ["i", "love", "to", "eat", "smoked", "ham"] corpus = [AlignedSent(trg_sentence, src_sentence)] alignment_info = AlignmentInfo( (0, 1, 4, 0, 2, 5, 5), [None] + src_sentence, ["UNUSED"] + trg_sentence, [[3], [1], [4], [], [2], [5, 6]], ) distortion_table = defaultdict( lambda: defaultdict(lambda: defaultdict(lambda: defaultdict(float))) ) distortion_table[1][1][5][6] = 0.97 # i -> ich distortion_table[2][4][5][6] = 0.97 # love -> gern distortion_table[3][0][5][6] = 0.97 # to -> NULL distortion_table[4][2][5][6] = 0.97 # eat -> esse distortion_table[5][5][5][6] = 0.97 # smoked -> räucherschinken distortion_table[6][5][5][6] = 0.97 # ham -> räucherschinken translation_table = defaultdict(lambda: defaultdict(float)) translation_table["i"]["ich"] = 0.98 translation_table["love"]["gern"] = 0.98 translation_table["to"][None] = 0.98 translation_table["eat"]["esse"] = 0.98 translation_table["smoked"]["räucherschinken"] = 0.98 translation_table["ham"]["räucherschinken"] = 0.98 fertility_table = defaultdict(lambda: defaultdict(float)) fertility_table[1]["ich"] = 0.99 fertility_table[1]["esse"] = 0.99 fertility_table[0]["ja"] = 0.99 fertility_table[1]["gern"] = 0.99 fertility_table[2]["räucherschinken"] = 0.999 fertility_table[1][None] = 0.99 probabilities = { "p1": 0.167, "translation_table": translation_table, "distortion_table": distortion_table, "fertility_table": fertility_table, "alignment_table": None, } model3 = IBMModel3(corpus, 0, probabilities) # act probability = model3.prob_t_a_given_s(alignment_info) # assert null_generation = 5 * pow(0.167, 1) * pow(0.833, 4) fertility = 1 * 0.99 * 1 * 0.99 * 1 * 0.99 * 1 * 0.99 * 2 * 0.999 lexical_translation = 0.98 * 0.98 * 0.98 * 0.98 * 0.98 * 0.98 distortion = 0.97 * 0.97 * 0.97 * 0.97 * 0.97 * 0.97 expected_probability = ( null_generation * fertility * lexical_translation * distortion ) self.assertEqual(round(probability, 4), round(expected_probability, 4))