""" Tests for IBM Model 4 training methods """ import unittest from collections import defaultdict from nltk.translate import AlignedSent, IBMModel, IBMModel4 from nltk.translate.ibm_model import AlignmentInfo class TestIBMModel4(unittest.TestCase): def test_set_uniform_distortion_probabilities_of_max_displacements(self): # arrange src_classes = {"schinken": 0, "eier": 0, "spam": 1} trg_classes = {"ham": 0, "eggs": 1, "spam": 2} corpus = [ AlignedSent(["ham", "eggs"], ["schinken", "schinken", "eier"]), AlignedSent(["spam", "spam", "spam", "spam"], ["spam", "spam"]), ] model4 = IBMModel4(corpus, 0, src_classes, trg_classes) # act model4.set_uniform_probabilities(corpus) # assert # number of displacement values = # 2 *(number of words in longest target sentence - 1) expected_prob = 1.0 / (2 * (4 - 1)) # examine the boundary values for (displacement, src_class, trg_class) self.assertEqual(model4.head_distortion_table[3][0][0], expected_prob) self.assertEqual(model4.head_distortion_table[-3][1][2], expected_prob) self.assertEqual(model4.non_head_distortion_table[3][0], expected_prob) self.assertEqual(model4.non_head_distortion_table[-3][2], expected_prob) def test_set_uniform_distortion_probabilities_of_non_domain_values(self): # arrange src_classes = {"schinken": 0, "eier": 0, "spam": 1} trg_classes = {"ham": 0, "eggs": 1, "spam": 2} corpus = [ AlignedSent(["ham", "eggs"], ["schinken", "schinken", "eier"]), AlignedSent(["spam", "spam", "spam", "spam"], ["spam", "spam"]), ] model4 = IBMModel4(corpus, 0, src_classes, trg_classes) # act model4.set_uniform_probabilities(corpus) # assert # examine displacement values that are not in the training data domain self.assertEqual(model4.head_distortion_table[4][0][0], IBMModel.MIN_PROB) self.assertEqual(model4.head_distortion_table[100][1][2], IBMModel.MIN_PROB) self.assertEqual(model4.non_head_distortion_table[4][0], IBMModel.MIN_PROB) self.assertEqual(model4.non_head_distortion_table[100][2], IBMModel.MIN_PROB) def test_prob_t_a_given_s(self): # arrange src_sentence = ["ich", "esse", "ja", "gern", "räucherschinken"] trg_sentence = ["i", "love", "to", "eat", "smoked", "ham"] src_classes = {"räucherschinken": 0, "ja": 1, "ich": 2, "esse": 3, "gern": 4} trg_classes = {"ham": 0, "smoked": 1, "i": 3, "love": 4, "to": 2, "eat": 4} corpus = [AlignedSent(trg_sentence, src_sentence)] alignment_info = AlignmentInfo( (0, 1, 4, 0, 2, 5, 5), [None] + src_sentence, ["UNUSED"] + trg_sentence, [[3], [1], [4], [], [2], [5, 6]], ) head_distortion_table = defaultdict( lambda: defaultdict(lambda: defaultdict(float)) ) head_distortion_table[1][None][3] = 0.97 # None, i head_distortion_table[3][2][4] = 0.97 # ich, eat head_distortion_table[-2][3][4] = 0.97 # esse, love head_distortion_table[3][4][1] = 0.97 # gern, smoked non_head_distortion_table = defaultdict(lambda: defaultdict(float)) non_head_distortion_table[1][0] = 0.96 # ham translation_table = defaultdict(lambda: defaultdict(float)) translation_table["i"]["ich"] = 0.98 translation_table["love"]["gern"] = 0.98 translation_table["to"][None] = 0.98 translation_table["eat"]["esse"] = 0.98 translation_table["smoked"]["räucherschinken"] = 0.98 translation_table["ham"]["räucherschinken"] = 0.98 fertility_table = defaultdict(lambda: defaultdict(float)) fertility_table[1]["ich"] = 0.99 fertility_table[1]["esse"] = 0.99 fertility_table[0]["ja"] = 0.99 fertility_table[1]["gern"] = 0.99 fertility_table[2]["räucherschinken"] = 0.999 fertility_table[1][None] = 0.99 probabilities = { "p1": 0.167, "translation_table": translation_table, "head_distortion_table": head_distortion_table, "non_head_distortion_table": non_head_distortion_table, "fertility_table": fertility_table, "alignment_table": None, } model4 = IBMModel4(corpus, 0, src_classes, trg_classes, probabilities) # act probability = model4.prob_t_a_given_s(alignment_info) # assert null_generation = 5 * pow(0.167, 1) * pow(0.833, 4) fertility = 1 * 0.99 * 1 * 0.99 * 1 * 0.99 * 1 * 0.99 * 2 * 0.999 lexical_translation = 0.98 * 0.98 * 0.98 * 0.98 * 0.98 * 0.98 distortion = 0.97 * 0.97 * 1 * 0.97 * 0.97 * 0.96 expected_probability = ( null_generation * fertility * lexical_translation * distortion ) self.assertEqual(round(probability, 4), round(expected_probability, 4))