from __future__ import annotations import io import base64 import pathlib from typing import Any, Mapping, TypeVar, cast from datetime import date, datetime from typing_extensions import Literal, get_args, override, get_type_hints import anyio import pydantic from ._utils import ( is_list, is_mapping, is_iterable, ) from .._files import is_base64_file_input from ._typing import ( is_list_type, is_union_type, extract_type_arg, is_iterable_type, is_required_type, is_annotated_type, strip_annotated_type, ) from .._compat import model_dump, is_typeddict _T = TypeVar("_T") # TODO: support for drilling globals() and locals() # TODO: ensure works correctly with forward references in all cases PropertyFormat = Literal["iso8601", "base64", "custom"] class PropertyInfo: """Metadata class to be used in Annotated types to provide information about a given type. For example: class MyParams(TypedDict): account_holder_name: Annotated[str, PropertyInfo(alias='accountHolderName')] This means that {'account_holder_name': 'Robert'} will be transformed to {'accountHolderName': 'Robert'} before being sent to the API. """ alias: str | None format: PropertyFormat | None format_template: str | None discriminator: str | None def __init__( self, *, alias: str | None = None, format: PropertyFormat | None = None, format_template: str | None = None, discriminator: str | None = None, ) -> None: self.alias = alias self.format = format self.format_template = format_template self.discriminator = discriminator @override def __repr__(self) -> str: return f"{self.__class__.__name__}(alias='{self.alias}', format={self.format}, format_template='{self.format_template}', discriminator='{self.discriminator}')" def maybe_transform( data: object, expected_type: object, ) -> Any | None: """Wrapper over `transform()` that allows `None` to be passed. See `transform()` for more details. """ if data is None: return None return transform(data, expected_type) # Wrapper over _transform_recursive providing fake types def transform( data: _T, expected_type: object, ) -> _T: """Transform dictionaries based off of type information from the given type, for example: ```py class Params(TypedDict, total=False): card_id: Required[Annotated[str, PropertyInfo(alias="cardID")]] transformed = transform({"card_id": ""}, Params) # {'cardID': ''} ``` Any keys / data that does not have type information given will be included as is. It should be noted that the transformations that this function does are not represented in the type system. """ transformed = _transform_recursive(data, annotation=cast(type, expected_type)) return cast(_T, transformed) def _get_annotated_type(type_: type) -> type | None: """If the given type is an `Annotated` type then it is returned, if not `None` is returned. This also unwraps the type when applicable, e.g. `Required[Annotated[T, ...]]` """ if is_required_type(type_): # Unwrap `Required[Annotated[T, ...]]` to `Annotated[T, ...]` type_ = get_args(type_)[0] if is_annotated_type(type_): return type_ return None def _maybe_transform_key(key: str, type_: type) -> str: """Transform the given `data` based on the annotations provided in `type_`. Note: this function only looks at `Annotated` types that contain `PropertInfo` metadata. """ annotated_type = _get_annotated_type(type_) if annotated_type is None: # no `Annotated` definition for this type, no transformation needed return key # ignore the first argument as it is the actual type annotations = get_args(annotated_type)[1:] for annotation in annotations: if isinstance(annotation, PropertyInfo) and annotation.alias is not None: return annotation.alias return key def _transform_recursive( data: object, *, annotation: type, inner_type: type | None = None, ) -> object: """Transform the given data against the expected type. Args: annotation: The direct type annotation given to the particular piece of data. This may or may not be wrapped in metadata types, e.g. `Required[T]`, `Annotated[T, ...]` etc inner_type: If applicable, this is the "inside" type. This is useful in certain cases where the outside type is a container type such as `List[T]`. In that case `inner_type` should be set to `T` so that each entry in the list can be transformed using the metadata from the container type. Defaults to the same value as the `annotation` argument. """ if inner_type is None: inner_type = annotation stripped_type = strip_annotated_type(inner_type) if is_typeddict(stripped_type) and is_mapping(data): return _transform_typeddict(data, stripped_type) if ( # List[T] (is_list_type(stripped_type) and is_list(data)) # Iterable[T] or (is_iterable_type(stripped_type) and is_iterable(data) and not isinstance(data, str)) ): inner_type = extract_type_arg(stripped_type, 0) return [_transform_recursive(d, annotation=annotation, inner_type=inner_type) for d in data] if is_union_type(stripped_type): # For union types we run the transformation against all subtypes to ensure that everything is transformed. # # TODO: there may be edge cases where the same normalized field name will transform to two different names # in different subtypes. for subtype in get_args(stripped_type): data = _transform_recursive(data, annotation=annotation, inner_type=subtype) return data if isinstance(data, pydantic.BaseModel): return model_dump(data, exclude_unset=True) annotated_type = _get_annotated_type(annotation) if annotated_type is None: return data # ignore the first argument as it is the actual type annotations = get_args(annotated_type)[1:] for annotation in annotations: if isinstance(annotation, PropertyInfo) and annotation.format is not None: return _format_data(data, annotation.format, annotation.format_template) return data def _format_data(data: object, format_: PropertyFormat, format_template: str | None) -> object: if isinstance(data, (date, datetime)): if format_ == "iso8601": return data.isoformat() if format_ == "custom" and format_template is not None: return data.strftime(format_template) if format_ == "base64" and is_base64_file_input(data): binary: str | bytes | None = None if isinstance(data, pathlib.Path): binary = data.read_bytes() elif isinstance(data, io.IOBase): binary = data.read() if isinstance(binary, str): # type: ignore[unreachable] binary = binary.encode() if not isinstance(binary, bytes): raise RuntimeError(f"Could not read bytes from {data}; Received {type(binary)}") return base64.b64encode(binary).decode("ascii") return data def _transform_typeddict( data: Mapping[str, object], expected_type: type, ) -> Mapping[str, object]: result: dict[str, object] = {} annotations = get_type_hints(expected_type, include_extras=True) for key, value in data.items(): type_ = annotations.get(key) if type_ is None: # we do not have a type annotation for this field, leave it as is result[key] = value else: result[_maybe_transform_key(key, type_)] = _transform_recursive(value, annotation=type_) return result async def async_maybe_transform( data: object, expected_type: object, ) -> Any | None: """Wrapper over `async_transform()` that allows `None` to be passed. See `async_transform()` for more details. """ if data is None: return None return await async_transform(data, expected_type) async def async_transform( data: _T, expected_type: object, ) -> _T: """Transform dictionaries based off of type information from the given type, for example: ```py class Params(TypedDict, total=False): card_id: Required[Annotated[str, PropertyInfo(alias="cardID")]] transformed = transform({"card_id": ""}, Params) # {'cardID': ''} ``` Any keys / data that does not have type information given will be included as is. It should be noted that the transformations that this function does are not represented in the type system. """ transformed = await _async_transform_recursive(data, annotation=cast(type, expected_type)) return cast(_T, transformed) async def _async_transform_recursive( data: object, *, annotation: type, inner_type: type | None = None, ) -> object: """Transform the given data against the expected type. Args: annotation: The direct type annotation given to the particular piece of data. This may or may not be wrapped in metadata types, e.g. `Required[T]`, `Annotated[T, ...]` etc inner_type: If applicable, this is the "inside" type. This is useful in certain cases where the outside type is a container type such as `List[T]`. In that case `inner_type` should be set to `T` so that each entry in the list can be transformed using the metadata from the container type. Defaults to the same value as the `annotation` argument. """ if inner_type is None: inner_type = annotation stripped_type = strip_annotated_type(inner_type) if is_typeddict(stripped_type) and is_mapping(data): return await _async_transform_typeddict(data, stripped_type) if ( # List[T] (is_list_type(stripped_type) and is_list(data)) # Iterable[T] or (is_iterable_type(stripped_type) and is_iterable(data) and not isinstance(data, str)) ): inner_type = extract_type_arg(stripped_type, 0) return [await _async_transform_recursive(d, annotation=annotation, inner_type=inner_type) for d in data] if is_union_type(stripped_type): # For union types we run the transformation against all subtypes to ensure that everything is transformed. # # TODO: there may be edge cases where the same normalized field name will transform to two different names # in different subtypes. for subtype in get_args(stripped_type): data = await _async_transform_recursive(data, annotation=annotation, inner_type=subtype) return data if isinstance(data, pydantic.BaseModel): return model_dump(data, exclude_unset=True) annotated_type = _get_annotated_type(annotation) if annotated_type is None: return data # ignore the first argument as it is the actual type annotations = get_args(annotated_type)[1:] for annotation in annotations: if isinstance(annotation, PropertyInfo) and annotation.format is not None: return await _async_format_data(data, annotation.format, annotation.format_template) return data async def _async_format_data(data: object, format_: PropertyFormat, format_template: str | None) -> object: if isinstance(data, (date, datetime)): if format_ == "iso8601": return data.isoformat() if format_ == "custom" and format_template is not None: return data.strftime(format_template) if format_ == "base64" and is_base64_file_input(data): binary: str | bytes | None = None if isinstance(data, pathlib.Path): binary = await anyio.Path(data).read_bytes() elif isinstance(data, io.IOBase): binary = data.read() if isinstance(binary, str): # type: ignore[unreachable] binary = binary.encode() if not isinstance(binary, bytes): raise RuntimeError(f"Could not read bytes from {data}; Received {type(binary)}") return base64.b64encode(binary).decode("ascii") return data async def _async_transform_typeddict( data: Mapping[str, object], expected_type: type, ) -> Mapping[str, object]: result: dict[str, object] = {} annotations = get_type_hints(expected_type, include_extras=True) for key, value in data.items(): type_ = annotations.get(key) if type_ is None: # we do not have a type annotation for this field, leave it as is result[key] = value else: result[_maybe_transform_key(key, type_)] = await _async_transform_recursive(value, annotation=type_) return result