from datetime import datetime from decimal import Decimal import numpy as np import pytest from pandas._libs import lib from pandas.compat import IS64 from pandas.errors import ( PerformanceWarning, SpecificationError, ) import pandas as pd from pandas import ( Categorical, DataFrame, Grouper, Index, MultiIndex, RangeIndex, Series, Timedelta, Timestamp, date_range, to_datetime, ) import pandas._testing as tm from pandas.core.arrays import BooleanArray import pandas.core.common as com from pandas.core.groupby.base import maybe_normalize_deprecated_kernels from pandas.tests.groupby import get_groupby_method_args def test_repr(): # GH18203 result = repr(Grouper(key="A", level="B")) expected = "Grouper(key='A', level='B', axis=0, sort=False, dropna=True)" assert result == expected @pytest.mark.parametrize("dtype", ["int64", "int32", "float64", "float32"]) def test_basic(dtype): data = Series(np.arange(9) // 3, index=np.arange(9), dtype=dtype) index = np.arange(9) np.random.shuffle(index) data = data.reindex(index) grouped = data.groupby(lambda x: x // 3, group_keys=False) for k, v in grouped: assert len(v) == 3 agged = grouped.aggregate(np.mean) assert agged[1] == 1 tm.assert_series_equal(agged, grouped.agg(np.mean)) # shorthand tm.assert_series_equal(agged, grouped.mean()) tm.assert_series_equal(grouped.agg(np.sum), grouped.sum()) expected = grouped.apply(lambda x: x * x.sum()) transformed = grouped.transform(lambda x: x * x.sum()) assert transformed[7] == 12 tm.assert_series_equal(transformed, expected) value_grouped = data.groupby(data) tm.assert_series_equal( value_grouped.aggregate(np.mean), agged, check_index_type=False ) # complex agg agged = grouped.aggregate([np.mean, np.std]) msg = r"nested renamer is not supported" with pytest.raises(SpecificationError, match=msg): grouped.aggregate({"one": np.mean, "two": np.std}) group_constants = {0: 10, 1: 20, 2: 30} agged = grouped.agg(lambda x: group_constants[x.name] + x.mean()) assert agged[1] == 21 # corner cases msg = "Must produce aggregated value" # exception raised is type Exception with pytest.raises(Exception, match=msg): grouped.aggregate(lambda x: x * 2) def test_groupby_nonobject_dtype(mframe, df_mixed_floats): key = mframe.index.codes[0] grouped = mframe.groupby(key) result = grouped.sum() expected = mframe.groupby(key.astype("O")).sum() tm.assert_frame_equal(result, expected) # GH 3911, mixed frame non-conversion df = df_mixed_floats.copy() df["value"] = range(len(df)) def max_value(group): return group.loc[group["value"].idxmax()] applied = df.groupby("A").apply(max_value) result = applied.dtypes expected = df.dtypes tm.assert_series_equal(result, expected) def test_groupby_return_type(): # GH2893, return a reduced type df1 = DataFrame( [ {"val1": 1, "val2": 20}, {"val1": 1, "val2": 19}, {"val1": 2, "val2": 27}, {"val1": 2, "val2": 12}, ] ) def func(dataf): return dataf["val2"] - dataf["val2"].mean() with tm.assert_produces_warning(FutureWarning): result = df1.groupby("val1", squeeze=True).apply(func) assert isinstance(result, Series) df2 = DataFrame( [ {"val1": 1, "val2": 20}, {"val1": 1, "val2": 19}, {"val1": 1, "val2": 27}, {"val1": 1, "val2": 12}, ] ) def func(dataf): return dataf["val2"] - dataf["val2"].mean() with tm.assert_produces_warning(FutureWarning): result = df2.groupby("val1", squeeze=True).apply(func) assert isinstance(result, Series) # GH3596, return a consistent type (regression in 0.11 from 0.10.1) df = DataFrame([[1, 1], [1, 1]], columns=["X", "Y"]) with tm.assert_produces_warning(FutureWarning): result = df.groupby("X", squeeze=False).count() assert isinstance(result, DataFrame) def test_inconsistent_return_type(): # GH5592 # inconsistent return type df = DataFrame( { "A": ["Tiger", "Tiger", "Tiger", "Lamb", "Lamb", "Pony", "Pony"], "B": Series(np.arange(7), dtype="int64"), "C": date_range("20130101", periods=7), } ) def f(grp): return grp.iloc[0] expected = df.groupby("A").first()[["B"]] result = df.groupby("A").apply(f)[["B"]] tm.assert_frame_equal(result, expected) def f(grp): if grp.name == "Tiger": return None return grp.iloc[0] result = df.groupby("A").apply(f)[["B"]] e = expected.copy() e.loc["Tiger"] = np.nan tm.assert_frame_equal(result, e) def f(grp): if grp.name == "Pony": return None return grp.iloc[0] result = df.groupby("A").apply(f)[["B"]] e = expected.copy() e.loc["Pony"] = np.nan tm.assert_frame_equal(result, e) # 5592 revisited, with datetimes def f(grp): if grp.name == "Pony": return None return grp.iloc[0] result = df.groupby("A").apply(f)[["C"]] e = df.groupby("A").first()[["C"]] e.loc["Pony"] = pd.NaT tm.assert_frame_equal(result, e) # scalar outputs def f(grp): if grp.name == "Pony": return None return grp.iloc[0].loc["C"] result = df.groupby("A").apply(f) e = df.groupby("A").first()["C"].copy() e.loc["Pony"] = np.nan e.name = None tm.assert_series_equal(result, e) def test_pass_args_kwargs(ts, tsframe): def f(x, q=None, axis=0): return np.percentile(x, q, axis=axis) g = lambda x: np.percentile(x, 80, axis=0) # Series ts_grouped = ts.groupby(lambda x: x.month) agg_result = ts_grouped.agg(np.percentile, 80, axis=0) apply_result = ts_grouped.apply(np.percentile, 80, axis=0) trans_result = ts_grouped.transform(np.percentile, 80, axis=0) agg_expected = ts_grouped.quantile(0.8) trans_expected = ts_grouped.transform(g) tm.assert_series_equal(apply_result, agg_expected) tm.assert_series_equal(agg_result, agg_expected) tm.assert_series_equal(trans_result, trans_expected) agg_result = ts_grouped.agg(f, q=80) apply_result = ts_grouped.apply(f, q=80) trans_result = ts_grouped.transform(f, q=80) tm.assert_series_equal(agg_result, agg_expected) tm.assert_series_equal(apply_result, agg_expected) tm.assert_series_equal(trans_result, trans_expected) # DataFrame for as_index in [True, False]: df_grouped = tsframe.groupby(lambda x: x.month, as_index=as_index) agg_result = df_grouped.agg(np.percentile, 80, axis=0) apply_result = df_grouped.apply(DataFrame.quantile, 0.8) expected = df_grouped.quantile(0.8) tm.assert_frame_equal(apply_result, expected, check_names=False) tm.assert_frame_equal(agg_result, expected) apply_result = df_grouped.apply(DataFrame.quantile, [0.4, 0.8]) expected_seq = df_grouped.quantile([0.4, 0.8]) tm.assert_frame_equal(apply_result, expected_seq, check_names=False) agg_result = df_grouped.agg(f, q=80) apply_result = df_grouped.apply(DataFrame.quantile, q=0.8) tm.assert_frame_equal(agg_result, expected) tm.assert_frame_equal(apply_result, expected, check_names=False) @pytest.mark.parametrize("as_index", [True, False]) def test_pass_args_kwargs_duplicate_columns(tsframe, as_index): # go through _aggregate_frame with self.axis == 0 and duplicate columns tsframe.columns = ["A", "B", "A", "C"] gb = tsframe.groupby(lambda x: x.month, as_index=as_index) res = gb.agg(np.percentile, 80, axis=0) ex_data = { 1: tsframe[tsframe.index.month == 1].quantile(0.8), 2: tsframe[tsframe.index.month == 2].quantile(0.8), } expected = DataFrame(ex_data).T if not as_index: # TODO: try to get this more consistent? expected.index = Index(range(2)) tm.assert_frame_equal(res, expected) def test_len(): df = tm.makeTimeDataFrame() grouped = df.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]) assert len(grouped) == len(df) grouped = df.groupby([lambda x: x.year, lambda x: x.month]) expected = len({(x.year, x.month) for x in df.index}) assert len(grouped) == expected # issue 11016 df = DataFrame({"a": [np.nan] * 3, "b": [1, 2, 3]}) assert len(df.groupby("a")) == 0 assert len(df.groupby("b")) == 3 assert len(df.groupby(["a", "b"])) == 3 def test_basic_regression(): # regression result = Series([1.0 * x for x in list(range(1, 10)) * 10]) data = np.random.random(1100) * 10.0 groupings = Series(data) grouped = result.groupby(groupings) grouped.mean() @pytest.mark.parametrize( "dtype", ["float64", "float32", "int64", "int32", "int16", "int8"] ) def test_with_na_groups(dtype): index = Index(np.arange(10)) values = Series(np.ones(10), index, dtype=dtype) labels = Series( [np.nan, "foo", "bar", "bar", np.nan, np.nan, "bar", "bar", np.nan, "foo"], index=index, ) # this SHOULD be an int grouped = values.groupby(labels) agged = grouped.agg(len) expected = Series([4, 2], index=["bar", "foo"]) tm.assert_series_equal(agged, expected, check_dtype=False) # assert issubclass(agged.dtype.type, np.integer) # explicitly return a float from my function def f(x): return float(len(x)) agged = grouped.agg(f) expected = Series([4.0, 2.0], index=["bar", "foo"]) tm.assert_series_equal(agged, expected) def test_indices_concatenation_order(): # GH 2808 def f1(x): y = x[(x.b % 2) == 1] ** 2 if y.empty: multiindex = MultiIndex(levels=[[]] * 2, codes=[[]] * 2, names=["b", "c"]) res = DataFrame(columns=["a"], index=multiindex) return res else: y = y.set_index(["b", "c"]) return y def f2(x): y = x[(x.b % 2) == 1] ** 2 if y.empty: return DataFrame() else: y = y.set_index(["b", "c"]) return y def f3(x): y = x[(x.b % 2) == 1] ** 2 if y.empty: multiindex = MultiIndex( levels=[[]] * 2, codes=[[]] * 2, names=["foo", "bar"] ) res = DataFrame(columns=["a", "b"], index=multiindex) return res else: return y df = DataFrame({"a": [1, 2, 2, 2], "b": range(4), "c": range(5, 9)}) df2 = DataFrame({"a": [3, 2, 2, 2], "b": range(4), "c": range(5, 9)}) # correct result result1 = df.groupby("a").apply(f1) result2 = df2.groupby("a").apply(f1) tm.assert_frame_equal(result1, result2) # should fail (not the same number of levels) msg = "Cannot concat indices that do not have the same number of levels" with pytest.raises(AssertionError, match=msg): df.groupby("a").apply(f2) with pytest.raises(AssertionError, match=msg): df2.groupby("a").apply(f2) # should fail (incorrect shape) with pytest.raises(AssertionError, match=msg): df.groupby("a").apply(f3) with pytest.raises(AssertionError, match=msg): df2.groupby("a").apply(f3) def test_attr_wrapper(ts): grouped = ts.groupby(lambda x: x.weekday()) result = grouped.std() expected = grouped.agg(lambda x: np.std(x, ddof=1)) tm.assert_series_equal(result, expected) # this is pretty cool result = grouped.describe() expected = {name: gp.describe() for name, gp in grouped} expected = DataFrame(expected).T tm.assert_frame_equal(result, expected) # get attribute result = grouped.dtype expected = grouped.agg(lambda x: x.dtype) tm.assert_series_equal(result, expected) # make sure raises error msg = "'SeriesGroupBy' object has no attribute 'foo'" with pytest.raises(AttributeError, match=msg): getattr(grouped, "foo") def test_frame_groupby(tsframe): grouped = tsframe.groupby(lambda x: x.weekday()) # aggregate aggregated = grouped.aggregate(np.mean) assert len(aggregated) == 5 assert len(aggregated.columns) == 4 # by string tscopy = tsframe.copy() tscopy["weekday"] = [x.weekday() for x in tscopy.index] stragged = tscopy.groupby("weekday").aggregate(np.mean) tm.assert_frame_equal(stragged, aggregated, check_names=False) # transform grouped = tsframe.head(30).groupby(lambda x: x.weekday()) transformed = grouped.transform(lambda x: x - x.mean()) assert len(transformed) == 30 assert len(transformed.columns) == 4 # transform propagate transformed = grouped.transform(lambda x: x.mean()) for name, group in grouped: mean = group.mean() for idx in group.index: tm.assert_series_equal(transformed.xs(idx), mean, check_names=False) # iterate for weekday, group in grouped: assert group.index[0].weekday() == weekday # groups / group_indices groups = grouped.groups indices = grouped.indices for k, v in groups.items(): samething = tsframe.index.take(indices[k]) assert (samething == v).all() def test_frame_groupby_columns(tsframe): mapping = {"A": 0, "B": 0, "C": 1, "D": 1} grouped = tsframe.groupby(mapping, axis=1) # aggregate aggregated = grouped.aggregate(np.mean) assert len(aggregated) == len(tsframe) assert len(aggregated.columns) == 2 # transform tf = lambda x: x - x.mean() groupedT = tsframe.T.groupby(mapping, axis=0) tm.assert_frame_equal(groupedT.transform(tf).T, grouped.transform(tf)) # iterate for k, v in grouped: assert len(v.columns) == 2 def test_frame_set_name_single(df): grouped = df.groupby("A") msg = "The default value of numeric_only" with tm.assert_produces_warning(FutureWarning, match=msg): result = grouped.mean() assert result.index.name == "A" with tm.assert_produces_warning(FutureWarning, match=msg): result = df.groupby("A", as_index=False).mean() assert result.index.name != "A" # GH#50538 msg = "The operation groupby preserves dtype whereas reset_index casts to int64 expected["a"] = expected["a"].astype(df["a"].dtype) g = df.groupby("a", as_index=False) with tm.assert_produces_warning(warn, match="The 'mad' method is deprecated"): result = getattr(g, reduction_func)() tm.assert_frame_equal(result, expected) with tm.assert_produces_warning(warn, match="The 'mad' method is deprecated"): result = g.agg(reduction_func) tm.assert_frame_equal(result, expected) with tm.assert_produces_warning(warn, match="The 'mad' method is deprecated"): result = getattr(g["b"], reduction_func)() tm.assert_frame_equal(result, expected) with tm.assert_produces_warning(warn, match="The 'mad' method is deprecated"): result = g["b"].agg(reduction_func) tm.assert_frame_equal(result, expected) def test_as_index_series_return_frame(df): grouped = df.groupby("A", as_index=False) grouped2 = df.groupby(["A", "B"], as_index=False) # GH#50538 msg = "The operation 0 return Decimal(str(x.mean())) grouped = s.groupby(labels) result = grouped.agg(convert_fast) assert result.dtype == np.object_ assert isinstance(result[0], Decimal) result = grouped.agg(convert_force_pure) assert result.dtype == np.object_ assert isinstance(result[0], Decimal) def test_groupby_dtype_inference_empty(): # GH 6733 df = DataFrame({"x": [], "range": np.arange(0, dtype="int64")}) assert df["x"].dtype == np.float64 result = df.groupby("x").first() exp_index = Index([], name="x", dtype=np.float64) expected = DataFrame({"range": Series([], index=exp_index, dtype="int64")}) tm.assert_frame_equal(result, expected, by_blocks=True) def test_groupby_unit64_float_conversion(): #  GH: 30859 groupby converts unit64 to floats sometimes df = DataFrame({"first": [1], "second": [1], "value": [16148277970000000000]}) result = df.groupby(["first", "second"])["value"].max() expected = Series( [16148277970000000000], MultiIndex.from_product([[1], [1]], names=["first", "second"]), name="value", ) tm.assert_series_equal(result, expected) def test_groupby_list_infer_array_like(df): msg = "The default value of numeric_only" with tm.assert_produces_warning(FutureWarning, match=msg): result = df.groupby(list(df["A"])).mean() expected = df.groupby(df["A"]).mean() tm.assert_frame_equal(result, expected, check_names=False) with pytest.raises(KeyError, match=r"^'foo'$"): df.groupby(list(df["A"][:-1])) # pathological case of ambiguity df = DataFrame({"foo": [0, 1], "bar": [3, 4], "val": np.random.randn(2)}) result = df.groupby(["foo", "bar"]).mean() expected = df.groupby([df["foo"], df["bar"]]).mean()[["val"]] def test_groupby_keys_same_size_as_index(): # GH 11185 freq = "s" index = date_range( start=Timestamp("2015-09-29T11:34:44-0700"), periods=2, freq=freq ) df = DataFrame([["A", 10], ["B", 15]], columns=["metric", "values"], index=index) result = df.groupby([Grouper(level=0, freq=freq), "metric"]).mean() expected = df.set_index([df.index, "metric"]).astype(float) tm.assert_frame_equal(result, expected) def test_groupby_one_row(): # GH 11741 msg = r"^'Z'$" df1 = DataFrame(np.random.randn(1, 4), columns=list("ABCD")) with pytest.raises(KeyError, match=msg): df1.groupby("Z") df2 = DataFrame(np.random.randn(2, 4), columns=list("ABCD")) with pytest.raises(KeyError, match=msg): df2.groupby("Z") def test_groupby_nat_exclude(): # GH 6992 df = DataFrame( { "values": np.random.randn(8), "dt": [ np.nan, Timestamp("2013-01-01"), np.nan, Timestamp("2013-02-01"), np.nan, Timestamp("2013-02-01"), np.nan, Timestamp("2013-01-01"), ], "str": [np.nan, "a", np.nan, "a", np.nan, "a", np.nan, "b"], } ) grouped = df.groupby("dt") expected = [Index([1, 7]), Index([3, 5])] keys = sorted(grouped.groups.keys()) assert len(keys) == 2 for k, e in zip(keys, expected): # grouped.groups keys are np.datetime64 with system tz # not to be affected by tz, only compare values tm.assert_index_equal(grouped.groups[k], e) # confirm obj is not filtered tm.assert_frame_equal(grouped.grouper.groupings[0].obj, df) assert grouped.ngroups == 2 expected = { Timestamp("2013-01-01 00:00:00"): np.array([1, 7], dtype=np.intp), Timestamp("2013-02-01 00:00:00"): np.array([3, 5], dtype=np.intp), } for k in grouped.indices: tm.assert_numpy_array_equal(grouped.indices[k], expected[k]) tm.assert_frame_equal(grouped.get_group(Timestamp("2013-01-01")), df.iloc[[1, 7]]) tm.assert_frame_equal(grouped.get_group(Timestamp("2013-02-01")), df.iloc[[3, 5]]) with pytest.raises(KeyError, match=r"^NaT$"): grouped.get_group(pd.NaT) nan_df = DataFrame( {"nan": [np.nan, np.nan, np.nan], "nat": [pd.NaT, pd.NaT, pd.NaT]} ) assert nan_df["nan"].dtype == "float64" assert nan_df["nat"].dtype == "datetime64[ns]" for key in ["nan", "nat"]: grouped = nan_df.groupby(key) assert grouped.groups == {} assert grouped.ngroups == 0 assert grouped.indices == {} with pytest.raises(KeyError, match=r"^nan$"): grouped.get_group(np.nan) with pytest.raises(KeyError, match=r"^NaT$"): grouped.get_group(pd.NaT) def test_groupby_two_group_keys_all_nan(): # GH #36842: Grouping over two group keys shouldn't raise an error df = DataFrame({"a": [np.nan, np.nan], "b": [np.nan, np.nan], "c": [1, 2]}) result = df.groupby(["a", "b"]).indices assert result == {} def test_groupby_2d_malformed(): d = DataFrame(index=range(2)) d["group"] = ["g1", "g2"] d["zeros"] = [0, 0] d["ones"] = [1, 1] d["label"] = ["l1", "l2"] msg = "The default value of numeric_only" with tm.assert_produces_warning(FutureWarning, match=msg): tmp = d.groupby(["group"]).mean() res_values = np.array([[0.0, 1.0], [0.0, 1.0]]) tm.assert_index_equal(tmp.columns, Index(["zeros", "ones"])) tm.assert_numpy_array_equal(tmp.values, res_values) def test_int32_overflow(): B = np.concatenate((np.arange(10000), np.arange(10000), np.arange(5000))) A = np.arange(25000) df = DataFrame({"A": A, "B": B, "C": A, "D": B, "E": np.random.randn(25000)}) left = df.groupby(["A", "B", "C", "D"]).sum() right = df.groupby(["D", "C", "B", "A"]).sum() assert len(left) == len(right) def test_groupby_sort_multi(): df = DataFrame( { "a": ["foo", "bar", "baz"], "b": [3, 2, 1], "c": [0, 1, 2], "d": np.random.randn(3), } ) tups = [tuple(row) for row in df[["a", "b", "c"]].values] tups = com.asarray_tuplesafe(tups) result = df.groupby(["a", "b", "c"], sort=True).sum() tm.assert_numpy_array_equal(result.index.values, tups[[1, 2, 0]]) tups = [tuple(row) for row in df[["c", "a", "b"]].values] tups = com.asarray_tuplesafe(tups) result = df.groupby(["c", "a", "b"], sort=True).sum() tm.assert_numpy_array_equal(result.index.values, tups) tups = [tuple(x) for x in df[["b", "c", "a"]].values] tups = com.asarray_tuplesafe(tups) result = df.groupby(["b", "c", "a"], sort=True).sum() tm.assert_numpy_array_equal(result.index.values, tups[[2, 1, 0]]) df = DataFrame( {"a": [0, 1, 2, 0, 1, 2], "b": [0, 0, 0, 1, 1, 1], "d": np.random.randn(6)} ) grouped = df.groupby(["a", "b"])["d"] result = grouped.sum() def _check_groupby(df, result, keys, field, f=lambda x: x.sum()): tups = [tuple(row) for row in df[keys].values] tups = com.asarray_tuplesafe(tups) expected = f(df.groupby(tups)[field]) for k, v in expected.items(): assert result[k] == v _check_groupby(df, result, ["a", "b"], "d") def test_dont_clobber_name_column(): df = DataFrame( {"key": ["a", "a", "a", "b", "b", "b"], "name": ["foo", "bar", "baz"] * 2} ) result = df.groupby("key", group_keys=False).apply(lambda x: x) tm.assert_frame_equal(result, df) def test_skip_group_keys(): tsf = tm.makeTimeDataFrame() grouped = tsf.groupby(lambda x: x.month, group_keys=False) result = grouped.apply(lambda x: x.sort_values(by="A")[:3]) pieces = [group.sort_values(by="A")[:3] for key, group in grouped] expected = pd.concat(pieces) tm.assert_frame_equal(result, expected) grouped = tsf["A"].groupby(lambda x: x.month, group_keys=False) result = grouped.apply(lambda x: x.sort_values()[:3]) pieces = [group.sort_values()[:3] for key, group in grouped] expected = pd.concat(pieces) tm.assert_series_equal(result, expected) def test_no_nonsense_name(float_frame): # GH #995 s = float_frame["C"].copy() s.name = None result = s.groupby(float_frame["A"]).agg(np.sum) assert result.name is None def test_multifunc_sum_bug(): # GH #1065 x = DataFrame(np.arange(9).reshape(3, 3)) x["test"] = 0 x["fl"] = [1.3, 1.5, 1.6] grouped = x.groupby("test") result = grouped.agg({"fl": "sum", 2: "size"}) assert result["fl"].dtype == np.float64 def test_handle_dict_return_value(df): def f(group): return {"max": group.max(), "min": group.min()} def g(group): return Series({"max": group.max(), "min": group.min()}) result = df.groupby("A")["C"].apply(f) expected = df.groupby("A")["C"].apply(g) assert isinstance(result, Series) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("grouper", ["A", ["A", "B"]]) def test_set_group_name(df, grouper): def f(group): assert group.name is not None return group def freduce(group): assert group.name is not None return group.sum() def foo(x): return freduce(x) grouped = df.groupby(grouper, group_keys=False) # make sure all these work grouped.apply(f) grouped.aggregate(freduce) grouped.aggregate({"C": freduce, "D": freduce}) grouped.transform(f) grouped["C"].apply(f) grouped["C"].aggregate(freduce) grouped["C"].aggregate([freduce, foo]) grouped["C"].transform(f) def test_group_name_available_in_inference_pass(): # gh-15062 df = DataFrame({"a": [0, 0, 1, 1, 2, 2], "b": np.arange(6)}) names = [] def f(group): names.append(group.name) return group.copy() df.groupby("a", sort=False, group_keys=False).apply(f) expected_names = [0, 1, 2] assert names == expected_names def test_no_dummy_key_names(df): # see gh-1291 msg = "The default value of numeric_only" with tm.assert_produces_warning(FutureWarning, match=msg): result = df.groupby(df["A"].values).sum() assert result.index.name is None with tm.assert_produces_warning(FutureWarning, match=msg): result = df.groupby([df["A"].values, df["B"].values]).sum() assert result.index.names == (None, None) def test_groupby_sort_multiindex_series(): # series multiindex groupby sort argument was not being passed through # _compress_group_index # GH 9444 index = MultiIndex( levels=[[1, 2], [1, 2]], codes=[[0, 0, 0, 0, 1, 1], [1, 1, 0, 0, 0, 0]], names=["a", "b"], ) mseries = Series([0, 1, 2, 3, 4, 5], index=index) index = MultiIndex( levels=[[1, 2], [1, 2]], codes=[[0, 0, 1], [1, 0, 0]], names=["a", "b"] ) mseries_result = Series([0, 2, 4], index=index) result = mseries.groupby(level=["a", "b"], sort=False).first() tm.assert_series_equal(result, mseries_result) result = mseries.groupby(level=["a", "b"], sort=True).first() tm.assert_series_equal(result, mseries_result.sort_index()) def test_groupby_reindex_inside_function(): periods = 1000 ind = date_range(start="2012/1/1", freq="5min", periods=periods) df = DataFrame({"high": np.arange(periods), "low": np.arange(periods)}, index=ind) def agg_before(func, fix=False): """ Run an aggregate func on the subset of data. """ def _func(data): d = data.loc[data.index.map(lambda x: x.hour < 11)].dropna() if fix: data[data.index[0]] if len(d) == 0: return None return func(d) return _func grouped = df.groupby(lambda x: datetime(x.year, x.month, x.day)) closure_bad = grouped.agg({"high": agg_before(np.max)}) closure_good = grouped.agg({"high": agg_before(np.max, True)}) tm.assert_frame_equal(closure_bad, closure_good) def test_groupby_multiindex_missing_pair(): # GH9049 df = DataFrame( { "group1": ["a", "a", "a", "b"], "group2": ["c", "c", "d", "c"], "value": [1, 1, 1, 5], } ) df = df.set_index(["group1", "group2"]) df_grouped = df.groupby(level=["group1", "group2"], sort=True) res = df_grouped.agg("sum") idx = MultiIndex.from_tuples( [("a", "c"), ("a", "d"), ("b", "c")], names=["group1", "group2"] ) exp = DataFrame([[2], [1], [5]], index=idx, columns=["value"]) tm.assert_frame_equal(res, exp) def test_groupby_multiindex_not_lexsorted(): # GH 11640 # define the lexsorted version lexsorted_mi = MultiIndex.from_tuples( [("a", ""), ("b1", "c1"), ("b2", "c2")], names=["b", "c"] ) lexsorted_df = DataFrame([[1, 3, 4]], columns=lexsorted_mi) assert lexsorted_df.columns._is_lexsorted() # define the non-lexsorted version not_lexsorted_df = DataFrame( columns=["a", "b", "c", "d"], data=[[1, "b1", "c1", 3], [1, "b2", "c2", 4]] ) not_lexsorted_df = not_lexsorted_df.pivot_table( index="a", columns=["b", "c"], values="d" ) not_lexsorted_df = not_lexsorted_df.reset_index() assert not not_lexsorted_df.columns._is_lexsorted() # compare the results tm.assert_frame_equal(lexsorted_df, not_lexsorted_df) expected = lexsorted_df.groupby("a").mean() with tm.assert_produces_warning(PerformanceWarning): result = not_lexsorted_df.groupby("a").mean() tm.assert_frame_equal(expected, result) # a transforming function should work regardless of sort # GH 14776 df = DataFrame( {"x": ["a", "a", "b", "a"], "y": [1, 1, 2, 2], "z": [1, 2, 3, 4]} ).set_index(["x", "y"]) assert not df.index._is_lexsorted() for level in [0, 1, [0, 1]]: for sort in [False, True]: result = df.groupby(level=level, sort=sort, group_keys=False).apply( DataFrame.drop_duplicates ) expected = df tm.assert_frame_equal(expected, result) result = ( df.sort_index() .groupby(level=level, sort=sort, group_keys=False) .apply(DataFrame.drop_duplicates) ) expected = df.sort_index() tm.assert_frame_equal(expected, result) def test_index_label_overlaps_location(): # checking we don't have any label/location confusion in the # wake of GH5375 df = DataFrame(list("ABCDE"), index=[2, 0, 2, 1, 1]) g = df.groupby(list("ababb")) actual = g.filter(lambda x: len(x) > 2) expected = df.iloc[[1, 3, 4]] tm.assert_frame_equal(actual, expected) ser = df[0] g = ser.groupby(list("ababb")) actual = g.filter(lambda x: len(x) > 2) expected = ser.take([1, 3, 4]) tm.assert_series_equal(actual, expected) # and again, with a generic Index of floats df.index = df.index.astype(float) g = df.groupby(list("ababb")) actual = g.filter(lambda x: len(x) > 2) expected = df.iloc[[1, 3, 4]] tm.assert_frame_equal(actual, expected) ser = df[0] g = ser.groupby(list("ababb")) actual = g.filter(lambda x: len(x) > 2) expected = ser.take([1, 3, 4]) tm.assert_series_equal(actual, expected) def test_transform_doesnt_clobber_ints(): # GH 7972 n = 6 x = np.arange(n) df = DataFrame({"a": x // 2, "b": 2.0 * x, "c": 3.0 * x}) df2 = DataFrame({"a": x // 2 * 1.0, "b": 2.0 * x, "c": 3.0 * x}) gb = df.groupby("a") result = gb.transform("mean") gb2 = df2.groupby("a") expected = gb2.transform("mean") tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "sort_column", ["ints", "floats", "strings", ["ints", "floats"], ["ints", "strings"]], ) @pytest.mark.parametrize( "group_column", ["int_groups", "string_groups", ["int_groups", "string_groups"]] ) def test_groupby_preserves_sort(sort_column, group_column): # Test to ensure that groupby always preserves sort order of original # object. Issue #8588 and #9651 df = DataFrame( { "int_groups": [3, 1, 0, 1, 0, 3, 3, 3], "string_groups": ["z", "a", "z", "a", "a", "g", "g", "g"], "ints": [8, 7, 4, 5, 2, 9, 1, 1], "floats": [2.3, 5.3, 6.2, -2.4, 2.2, 1.1, 1.1, 5], "strings": ["z", "d", "a", "e", "word", "word2", "42", "47"], } ) # Try sorting on different types and with different group types df = df.sort_values(by=sort_column) g = df.groupby(group_column) def test_sort(x): tm.assert_frame_equal(x, x.sort_values(by=sort_column)) g.apply(test_sort) def test_pivot_table_values_key_error(): # This test is designed to replicate the error in issue #14938 df = DataFrame( { "eventDate": date_range(datetime.today(), periods=20, freq="M").tolist(), "thename": range(0, 20), } ) df["year"] = df.set_index("eventDate").index.year df["month"] = df.set_index("eventDate").index.month with pytest.raises(KeyError, match="'badname'"): df.reset_index().pivot_table( index="year", columns="month", values="badname", aggfunc="count" ) @pytest.mark.parametrize("columns", ["C", ["C"]]) @pytest.mark.parametrize("keys", [["A"], ["A", "B"]]) @pytest.mark.parametrize( "values", [ [True], [0], [0.0], ["a"], Categorical([0]), [to_datetime(0)], date_range(0, 1, 1, tz="US/Eastern"), pd.array([0], dtype="Int64"), pd.array([0], dtype="Float64"), pd.array([False], dtype="boolean"), ], ids=[ "bool", "int", "float", "str", "cat", "dt64", "dt64tz", "Int64", "Float64", "boolean", ], ) @pytest.mark.parametrize("method", ["attr", "agg", "apply"]) @pytest.mark.parametrize( "op", ["idxmax", "idxmin", "mad", "min", "max", "sum", "prod", "skew"] ) @pytest.mark.filterwarnings("ignore:Dropping invalid columns:FutureWarning") @pytest.mark.filterwarnings("ignore:.*Select only valid:FutureWarning") def test_empty_groupby(columns, keys, values, method, op, request, using_array_manager): # GH8093 & GH26411 override_dtype = None if ( isinstance(values, Categorical) and not isinstance(columns, list) and op in ["sum", "prod", "skew", "mad"] ): # handled below GH#41291 if using_array_manager and op == "mad": right_msg = "Cannot interpret 'CategoricalDtype.* as a data type" msg = "Regex pattern \"'Categorical' does not implement.*" + right_msg mark = pytest.mark.xfail(raises=AssertionError, match=msg) request.node.add_marker(mark) elif ( isinstance(values, Categorical) and len(keys) == 1 and op in ["idxmax", "idxmin"] ): mark = pytest.mark.xfail( raises=ValueError, match="attempt to get arg(min|max) of an empty sequence" ) request.node.add_marker(mark) elif ( isinstance(values, Categorical) and len(keys) == 1 and not isinstance(columns, list) ): mark = pytest.mark.xfail( raises=TypeError, match="'Categorical' does not implement" ) request.node.add_marker(mark) elif isinstance(values, Categorical) and len(keys) == 1 and op in ["sum", "prod"]: mark = pytest.mark.xfail( raises=AssertionError, match="(DataFrame|Series) are different" ) request.node.add_marker(mark) elif ( isinstance(values, Categorical) and len(keys) == 2 and op in ["min", "max", "sum"] ): mark = pytest.mark.xfail( raises=AssertionError, match="(DataFrame|Series) are different" ) request.node.add_marker(mark) elif ( op == "mad" and not isinstance(columns, list) and isinstance(values, pd.DatetimeIndex) and values.tz is not None and using_array_manager ): mark = pytest.mark.xfail( raises=TypeError, match=r"Cannot interpret 'datetime64\[ns, US/Eastern\]' as a data type", ) request.node.add_marker(mark) elif isinstance(values, BooleanArray) and op in ["sum", "prod"]: # We expect to get Int64 back for these override_dtype = "Int64" if isinstance(values[0], bool) and op in ("prod", "sum"): # sum/product of bools is an integer override_dtype = "int64" df = DataFrame({"A": values, "B": values, "C": values}, columns=list("ABC")) if hasattr(values, "dtype"): # check that we did the construction right assert (df.dtypes == values.dtype).all() df = df.iloc[:0] gb = df.groupby(keys, group_keys=False)[columns] def get_result(): warn = FutureWarning if op == "mad" else None with tm.assert_produces_warning( warn, match="The 'mad' method is deprecated", raise_on_extra_warnings=False ): if method == "attr": return getattr(gb, op)() else: return getattr(gb, method)(op) if columns == "C": # i.e. SeriesGroupBy if op in ["prod", "sum", "skew"]: # ops that require more than just ordered-ness if df.dtypes[0].kind == "M": # GH#41291 # datetime64 -> prod and sum are invalid if op == "skew": msg = "does not support reduction 'skew'" else: msg = "datetime64 type does not support" with pytest.raises(TypeError, match=msg): get_result() return if op in ["prod", "sum", "skew", "mad"]: if isinstance(values, Categorical): # GH#41291 if op == "mad": # mad calls mean, which Categorical doesn't implement msg = "does not support reduction 'mean'" elif op == "skew": msg = f"does not support reduction '{op}'" else: msg = "category type does not support" with pytest.raises(TypeError, match=msg): get_result() return else: # ie. DataFrameGroupBy if op in ["prod", "sum"]: # ops that require more than just ordered-ness if df.dtypes[0].kind == "M": # GH#41291 # datetime64 -> prod and sum are invalid result = get_result() # with numeric_only=True, these are dropped, and we get # an empty DataFrame back expected = df.set_index(keys)[[]] tm.assert_equal(result, expected) return elif isinstance(values, Categorical): # GH#41291 # Categorical doesn't implement sum or prod result = get_result() # with numeric_only=True, these are dropped, and we get # an empty DataFrame back expected = df.set_index(keys)[[]] if len(keys) != 1 and op == "prod": # TODO: why just prod and not sum? # Categorical is special without 'observed=True' lev = Categorical([0], dtype=values.dtype) mi = MultiIndex.from_product([lev, lev], names=["A", "B"]) expected = DataFrame([], columns=[], index=mi) tm.assert_equal(result, expected) return elif df.dtypes[0] == object: # FIXME: the test is actually wrong here, xref #41341 result = get_result() # In this case we have list-of-list, will raise TypeError, # and subsequently be dropped as nuisance columns expected = df.set_index(keys)[[]] tm.assert_equal(result, expected) return if ( op in ["mad", "min", "max", "skew"] and isinstance(values, Categorical) and len(keys) == 1 ): # Categorical doesn't implement, so with numeric_only=True # these are dropped and we get an empty DataFrame back result = get_result() expected = df.set_index(keys)[[]] # with numeric_only=True, these are dropped, and we get # an empty DataFrame back if len(keys) != 1: # Categorical is special without 'observed=True' lev = Categorical([0], dtype=values.dtype) mi = MultiIndex.from_product([lev, lev], names=keys) expected = DataFrame([], columns=[], index=mi) else: # all columns are dropped, but we end up with one row # Categorical is special without 'observed=True' lev = Categorical([0], dtype=values.dtype) ci = Index(lev, name=keys[0]) expected = DataFrame([], columns=[], index=ci) # expected = df.set_index(keys)[columns] tm.assert_equal(result, expected) return result = get_result() expected = df.set_index(keys)[columns] if override_dtype is not None: expected = expected.astype(override_dtype) if len(keys) == 1: expected.index.name = keys[0] tm.assert_equal(result, expected) def test_empty_groupby_apply_nonunique_columns(): # GH#44417 df = DataFrame(np.random.randn(0, 4)) df[3] = df[3].astype(np.int64) df.columns = [0, 1, 2, 0] gb = df.groupby(df[1], group_keys=False) res = gb.apply(lambda x: x) assert (res.dtypes == df.dtypes).all() def test_tuple_as_grouping(): # https://github.com/pandas-dev/pandas/issues/18314 df = DataFrame( { ("a", "b"): [1, 1, 1, 1], "a": [2, 2, 2, 2], "b": [2, 2, 2, 2], "c": [1, 1, 1, 1], } ) with pytest.raises(KeyError, match=r"('a', 'b')"): df[["a", "b", "c"]].groupby(("a", "b")) result = df.groupby(("a", "b"))["c"].sum() expected = Series([4], name="c", index=Index([1], name=("a", "b"))) tm.assert_series_equal(result, expected) def test_tuple_correct_keyerror(): # https://github.com/pandas-dev/pandas/issues/18798 df = DataFrame(1, index=range(3), columns=MultiIndex.from_product([[1, 2], [3, 4]])) with pytest.raises(KeyError, match=r"^\(7, 8\)$"): df.groupby((7, 8)).mean() def test_groupby_agg_ohlc_non_first(): # GH 21716 df = DataFrame( [[1], [1]], columns=Index(["foo"], name="mycols"), index=date_range("2018-01-01", periods=2, freq="D", name="dti"), ) expected = DataFrame( [[1, 1, 1, 1, 1], [1, 1, 1, 1, 1]], columns=MultiIndex.from_tuples( ( ("foo", "sum", "foo"), ("foo", "ohlc", "open"), ("foo", "ohlc", "high"), ("foo", "ohlc", "low"), ("foo", "ohlc", "close"), ), names=["mycols", None, None], ), index=date_range("2018-01-01", periods=2, freq="D", name="dti"), ) result = df.groupby(Grouper(freq="D")).agg(["sum", "ohlc"]) tm.assert_frame_equal(result, expected) def test_groupby_multiindex_nat(): # GH 9236 values = [ (pd.NaT, "a"), (datetime(2012, 1, 2), "a"), (datetime(2012, 1, 2), "b"), (datetime(2012, 1, 3), "a"), ] mi = MultiIndex.from_tuples(values, names=["date", None]) ser = Series([3, 2, 2.5, 4], index=mi) result = ser.groupby(level=1).mean() expected = Series([3.0, 2.5], index=["a", "b"]) tm.assert_series_equal(result, expected) def test_groupby_empty_list_raises(): # GH 5289 values = zip(range(10), range(10)) df = DataFrame(values, columns=["apple", "b"]) msg = "Grouper and axis must be same length" with pytest.raises(ValueError, match=msg): df.groupby([[]]) def test_groupby_multiindex_series_keys_len_equal_group_axis(): # GH 25704 index_array = [["x", "x"], ["a", "b"], ["k", "k"]] index_names = ["first", "second", "third"] ri = MultiIndex.from_arrays(index_array, names=index_names) s = Series(data=[1, 2], index=ri) result = s.groupby(["first", "third"]).sum() index_array = [["x"], ["k"]] index_names = ["first", "third"] ei = MultiIndex.from_arrays(index_array, names=index_names) expected = Series([3], index=ei) tm.assert_series_equal(result, expected) def test_groupby_groups_in_BaseGrouper(): # GH 26326 # Test if DataFrame grouped with a pandas.Grouper has correct groups mi = MultiIndex.from_product([["A", "B"], ["C", "D"]], names=["alpha", "beta"]) df = DataFrame({"foo": [1, 2, 1, 2], "bar": [1, 2, 3, 4]}, index=mi) result = df.groupby([Grouper(level="alpha"), "beta"]) expected = df.groupby(["alpha", "beta"]) assert result.groups == expected.groups result = df.groupby(["beta", Grouper(level="alpha")]) expected = df.groupby(["beta", "alpha"]) assert result.groups == expected.groups @pytest.mark.parametrize("group_name", ["x", ["x"]]) def test_groupby_axis_1(group_name): # GH 27614 df = DataFrame( np.arange(12).reshape(3, 4), index=[0, 1, 0], columns=[10, 20, 10, 20] ) df.index.name = "y" df.columns.name = "x" results = df.groupby(group_name, axis=1).sum() expected = df.T.groupby(group_name).sum().T tm.assert_frame_equal(results, expected) # test on MI column iterables = [["bar", "baz", "foo"], ["one", "two"]] mi = MultiIndex.from_product(iterables=iterables, names=["x", "x1"]) df = DataFrame(np.arange(18).reshape(3, 6), index=[0, 1, 0], columns=mi) results = df.groupby(group_name, axis=1).sum() expected = df.T.groupby(group_name).sum().T tm.assert_frame_equal(results, expected) @pytest.mark.parametrize( "op, expected", [ ( "shift", { "time": [ None, None, Timestamp("2019-01-01 12:00:00"), Timestamp("2019-01-01 12:30:00"), None, None, ] }, ), ( "bfill", { "time": [ Timestamp("2019-01-01 12:00:00"), Timestamp("2019-01-01 12:30:00"), Timestamp("2019-01-01 14:00:00"), Timestamp("2019-01-01 14:30:00"), Timestamp("2019-01-01 14:00:00"), Timestamp("2019-01-01 14:30:00"), ] }, ), ( "ffill", { "time": [ Timestamp("2019-01-01 12:00:00"), Timestamp("2019-01-01 12:30:00"), Timestamp("2019-01-01 12:00:00"), Timestamp("2019-01-01 12:30:00"), Timestamp("2019-01-01 14:00:00"), Timestamp("2019-01-01 14:30:00"), ] }, ), ], ) def test_shift_bfill_ffill_tz(tz_naive_fixture, op, expected): # GH19995, GH27992: Check that timezone does not drop in shift, bfill, and ffill tz = tz_naive_fixture data = { "id": ["A", "B", "A", "B", "A", "B"], "time": [ Timestamp("2019-01-01 12:00:00"), Timestamp("2019-01-01 12:30:00"), None, None, Timestamp("2019-01-01 14:00:00"), Timestamp("2019-01-01 14:30:00"), ], } df = DataFrame(data).assign(time=lambda x: x.time.dt.tz_localize(tz)) grouped = df.groupby("id") result = getattr(grouped, op)() expected = DataFrame(expected).assign(time=lambda x: x.time.dt.tz_localize(tz)) tm.assert_frame_equal(result, expected) def test_groupby_only_none_group(): # see GH21624 # this was crashing with "ValueError: Length of passed values is 1, index implies 0" df = DataFrame({"g": [None], "x": 1}) actual = df.groupby("g")["x"].transform("sum") expected = Series([np.nan], name="x") tm.assert_series_equal(actual, expected) def test_groupby_duplicate_index(): # GH#29189 the groupby call here used to raise ser = Series([2, 5, 6, 8], index=[2.0, 4.0, 4.0, 5.0]) gb = ser.groupby(level=0) result = gb.mean() expected = Series([2, 5.5, 8], index=[2.0, 4.0, 5.0]) tm.assert_series_equal(result, expected) @pytest.mark.filterwarnings("ignore:.*is deprecated.*:FutureWarning") def test_group_on_empty_multiindex(transformation_func, request): # GH 47787 # With one row, those are transforms so the schema should be the same if transformation_func == "tshift": mark = pytest.mark.xfail(raises=NotImplementedError) request.node.add_marker(mark) df = DataFrame( data=[[1, Timestamp("today"), 3, 4]], columns=["col_1", "col_2", "col_3", "col_4"], ) df["col_3"] = df["col_3"].astype(int) df["col_4"] = df["col_4"].astype(int) df = df.set_index(["col_1", "col_2"]) if transformation_func == "fillna": args = ("ffill",) elif transformation_func == "tshift": args = (1, "D") else: args = () result = df.iloc[:0].groupby(["col_1"]).transform(transformation_func, *args) expected = df.groupby(["col_1"]).transform(transformation_func, *args).iloc[:0] if transformation_func in ("diff", "shift"): expected = expected.astype(int) tm.assert_equal(result, expected) result = ( df["col_3"].iloc[:0].groupby(["col_1"]).transform(transformation_func, *args) ) expected = ( df["col_3"].groupby(["col_1"]).transform(transformation_func, *args).iloc[:0] ) if transformation_func in ("diff", "shift"): expected = expected.astype(int) tm.assert_equal(result, expected) @pytest.mark.parametrize( "idx", [ Index(["a", "a"], name="foo"), MultiIndex.from_tuples((("a", "a"), ("a", "a")), names=["foo", "bar"]), ], ) @pytest.mark.filterwarnings("ignore:tshift is deprecated:FutureWarning") def test_dup_labels_output_shape(groupby_func, idx): if groupby_func in {"size", "ngroup", "cumcount"}: pytest.skip(f"Not applicable for {groupby_func}") # TODO(2.0) Remove after pad/backfill deprecation enforced groupby_func = maybe_normalize_deprecated_kernels(groupby_func) warn = FutureWarning if groupby_func in ("mad", "tshift") else None df = DataFrame([[1, 1]], columns=idx) grp_by = df.groupby([0]) if groupby_func == "tshift": df.index = [Timestamp("today")] # args.extend([1, "D"]) args = get_groupby_method_args(groupby_func, df) with tm.assert_produces_warning(warn, match="is deprecated"): result = getattr(grp_by, groupby_func)(*args) assert result.shape == (1, 2) tm.assert_index_equal(result.columns, idx) def test_groupby_crash_on_nunique(axis): # Fix following 30253 dti = date_range("2016-01-01", periods=2, name="foo") df = DataFrame({("A", "B"): [1, 2], ("A", "C"): [1, 3], ("D", "B"): [0, 0]}) df.columns.names = ("bar", "baz") df.index = dti axis_number = df._get_axis_number(axis) if not axis_number: df = df.T gb = df.groupby(axis=axis_number, level=0) result = gb.nunique() expected = DataFrame({"A": [1, 2], "D": [1, 1]}, index=dti) expected.columns.name = "bar" if not axis_number: expected = expected.T tm.assert_frame_equal(result, expected) if axis_number == 0: # same thing, but empty columns gb2 = df[[]].groupby(axis=axis_number, level=0) exp = expected[[]] else: # same thing, but empty rows gb2 = df.loc[[]].groupby(axis=axis_number, level=0) # default for empty when we can't infer a dtype is float64 exp = expected.loc[[]].astype(np.float64) res = gb2.nunique() tm.assert_frame_equal(res, exp) def test_groupby_list_level(): # GH 9790 expected = DataFrame(np.arange(0, 9).reshape(3, 3), dtype=float) result = expected.groupby(level=[0]).mean() tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "max_seq_items, expected", [ (5, "{0: [0], 1: [1], 2: [2], 3: [3], 4: [4]}"), (4, "{0: [0], 1: [1], 2: [2], 3: [3], ...}"), (1, "{0: [0], ...}"), ], ) def test_groups_repr_truncates(max_seq_items, expected): # GH 1135 df = DataFrame(np.random.randn(5, 1)) df["a"] = df.index with pd.option_context("display.max_seq_items", max_seq_items): result = df.groupby("a").groups.__repr__() assert result == expected result = df.groupby(np.array(df.a)).groups.__repr__() assert result == expected def test_group_on_two_row_multiindex_returns_one_tuple_key(): # GH 18451 df = DataFrame([{"a": 1, "b": 2, "c": 99}, {"a": 1, "b": 2, "c": 88}]) df = df.set_index(["a", "b"]) grp = df.groupby(["a", "b"]) result = grp.indices expected = {(1, 2): np.array([0, 1], dtype=np.int64)} assert len(result) == 1 key = (1, 2) assert (result[key] == expected[key]).all() @pytest.mark.parametrize( "klass, attr, value", [ (DataFrame, "level", "a"), (DataFrame, "as_index", False), (DataFrame, "sort", False), (DataFrame, "group_keys", False), (DataFrame, "squeeze", True), (DataFrame, "observed", True), (DataFrame, "dropna", False), pytest.param( Series, "axis", 1, marks=pytest.mark.xfail( reason="GH 35443: Attribute currently not passed on to series" ), ), (Series, "level", "a"), (Series, "as_index", False), (Series, "sort", False), (Series, "group_keys", False), (Series, "squeeze", True), (Series, "observed", True), (Series, "dropna", False), ], ) @pytest.mark.filterwarnings( "ignore:The `squeeze` parameter is deprecated:FutureWarning" ) def test_subsetting_columns_keeps_attrs(klass, attr, value): # GH 9959 - When subsetting columns, don't drop attributes df = DataFrame({"a": [1], "b": [2], "c": [3]}) if attr != "axis": df = df.set_index("a") expected = df.groupby("a", **{attr: value}) result = expected[["b"]] if klass is DataFrame else expected["b"] assert getattr(result, attr) == getattr(expected, attr) def test_subsetting_columns_axis_1(): # GH 37725 g = DataFrame({"A": [1], "B": [2], "C": [3]}).groupby([0, 0, 1], axis=1) match = "Cannot subset columns when using axis=1" with pytest.raises(ValueError, match=match): g[["A", "B"]].sum() @pytest.mark.parametrize("func", ["sum", "any", "shift"]) def test_groupby_column_index_name_lost(func): # GH: 29764 groupby loses index sometimes expected = Index(["a"], name="idx") df = DataFrame([[1]], columns=expected) df_grouped = df.groupby([1]) result = getattr(df_grouped, func)().columns tm.assert_index_equal(result, expected) def test_groupby_duplicate_columns(): # GH: 31735 df = DataFrame( {"A": ["f", "e", "g", "h"], "B": ["a", "b", "c", "d"], "C": [1, 2, 3, 4]} ).astype(object) df.columns = ["A", "B", "B"] result = df.groupby([0, 0, 0, 0]).min() expected = DataFrame([["e", "a", 1]], columns=["A", "B", "B"]) tm.assert_frame_equal(result, expected) def test_groupby_series_with_tuple_name(): # GH 37755 ser = Series([1, 2, 3, 4], index=[1, 1, 2, 2], name=("a", "a")) ser.index.name = ("b", "b") result = ser.groupby(level=0).last() expected = Series([2, 4], index=[1, 2], name=("a", "a")) expected.index.name = ("b", "b") tm.assert_series_equal(result, expected) @pytest.mark.xfail(not IS64, reason="GH#38778: fail on 32-bit system") @pytest.mark.parametrize( "func, values", [("sum", [97.0, 98.0]), ("mean", [24.25, 24.5])] ) def test_groupby_numerical_stability_sum_mean(func, values): # GH#38778 data = [1e16, 1e16, 97, 98, -5e15, -5e15, -5e15, -5e15] df = DataFrame({"group": [1, 2] * 4, "a": data, "b": data}) result = getattr(df.groupby("group"), func)() expected = DataFrame({"a": values, "b": values}, index=Index([1, 2], name="group")) tm.assert_frame_equal(result, expected) @pytest.mark.xfail(not IS64, reason="GH#38778: fail on 32-bit system") def test_groupby_numerical_stability_cumsum(): # GH#38934 data = [1e16, 1e16, 97, 98, -5e15, -5e15, -5e15, -5e15] df = DataFrame({"group": [1, 2] * 4, "a": data, "b": data}) result = df.groupby("group").cumsum() exp_data = ( [1e16] * 2 + [1e16 + 96, 1e16 + 98] + [5e15 + 97, 5e15 + 98] + [97.0, 98.0] ) expected = DataFrame({"a": exp_data, "b": exp_data}) tm.assert_frame_equal(result, expected, check_exact=True) def test_groupby_cumsum_skipna_false(): # GH#46216 don't propagate np.nan above the diagonal arr = np.random.randn(5, 5) df = DataFrame(arr) for i in range(5): df.iloc[i, i] = np.nan df["A"] = 1 gb = df.groupby("A") res = gb.cumsum(skipna=False) expected = df[[0, 1, 2, 3, 4]].cumsum(skipna=False) tm.assert_frame_equal(res, expected) def test_groupby_cumsum_timedelta64(): # GH#46216 don't ignore is_datetimelike in libgroupby.group_cumsum dti = date_range("2016-01-01", periods=5) ser = Series(dti) - dti[0] ser[2] = pd.NaT df = DataFrame({"A": 1, "B": ser}) gb = df.groupby("A") res = gb.cumsum(numeric_only=False, skipna=True) exp = DataFrame({"B": [ser[0], ser[1], pd.NaT, ser[4], ser[4] * 2]}) tm.assert_frame_equal(res, exp) res = gb.cumsum(numeric_only=False, skipna=False) exp = DataFrame({"B": [ser[0], ser[1], pd.NaT, pd.NaT, pd.NaT]}) tm.assert_frame_equal(res, exp) def test_groupby_mean_duplicate_index(rand_series_with_duplicate_datetimeindex): dups = rand_series_with_duplicate_datetimeindex result = dups.groupby(level=0).mean() expected = dups.groupby(dups.index).mean() tm.assert_series_equal(result, expected) def test_groupby_all_nan_groups_drop(): # GH 15036 s = Series([1, 2, 3], [np.nan, np.nan, np.nan]) result = s.groupby(s.index).sum() expected = Series([], index=Index([], dtype=np.float64), dtype=np.int64) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("numeric_only", [True, False]) def test_groupby_empty_multi_column(as_index, numeric_only): # GH 15106 & GH 41998 df = DataFrame(data=[], columns=["A", "B", "C"]) gb = df.groupby(["A", "B"], as_index=as_index) result = gb.sum(numeric_only=numeric_only) if as_index: index = MultiIndex([[], []], [[], []], names=["A", "B"]) columns = ["C"] if not numeric_only else [] else: index = RangeIndex(0) columns = ["A", "B", "C"] if not numeric_only else ["A", "B"] expected = DataFrame([], columns=columns, index=index) tm.assert_frame_equal(result, expected) def test_groupby_aggregation_non_numeric_dtype(): # GH #43108 df = DataFrame( [["M", [1]], ["M", [1]], ["W", [10]], ["W", [20]]], columns=["MW", "v"] ) expected = DataFrame( { "v": [[1, 1], [10, 20]], }, index=Index(["M", "W"], dtype="object", name="MW"), ) gb = df.groupby(by=["MW"]) result = gb.sum() tm.assert_frame_equal(result, expected) def test_groupby_aggregation_multi_non_numeric_dtype(): # GH #42395 df = DataFrame( { "x": [1, 0, 1, 1, 0], "y": [Timedelta(i, "days") for i in range(1, 6)], "z": [Timedelta(i * 10, "days") for i in range(1, 6)], } ) expected = DataFrame( { "y": [Timedelta(i, "days") for i in range(7, 9)], "z": [Timedelta(i * 10, "days") for i in range(7, 9)], }, index=Index([0, 1], dtype="int64", name="x"), ) gb = df.groupby(by=["x"]) result = gb.sum() tm.assert_frame_equal(result, expected) def test_groupby_aggregation_numeric_with_non_numeric_dtype(): # GH #43108 df = DataFrame( { "x": [1, 0, 1, 1, 0], "y": [Timedelta(i, "days") for i in range(1, 6)], "z": list(range(1, 6)), } ) expected = DataFrame( {"z": [7, 8]}, index=Index([0, 1], dtype="int64", name="x"), ) gb = df.groupby(by=["x"]) msg = "The default value of numeric_only" with tm.assert_produces_warning(FutureWarning, match=msg): result = gb.sum() tm.assert_frame_equal(result, expected) def test_groupby_filtered_df_std(): # GH 16174 dicts = [ {"filter_col": False, "groupby_col": True, "bool_col": True, "float_col": 10.5}, {"filter_col": True, "groupby_col": True, "bool_col": True, "float_col": 20.5}, {"filter_col": True, "groupby_col": True, "bool_col": True, "float_col": 30.5}, ] df = DataFrame(dicts) df_filter = df[df["filter_col"] == True] # noqa:E712 dfgb = df_filter.groupby("groupby_col") result = dfgb.std() expected = DataFrame( [[0.0, 0.0, 7.071068]], columns=["filter_col", "bool_col", "float_col"], index=Index([True], name="groupby_col"), ) tm.assert_frame_equal(result, expected) def test_datetime_categorical_multikey_groupby_indices(): # GH 26859 df = DataFrame( { "a": Series(list("abc")), "b": Series( to_datetime(["2018-01-01", "2018-02-01", "2018-03-01"]), dtype="category", ), "c": Categorical.from_codes([-1, 0, 1], categories=[0, 1]), } ) result = df.groupby(["a", "b"]).indices expected = { ("a", Timestamp("2018-01-01 00:00:00")): np.array([0]), ("b", Timestamp("2018-02-01 00:00:00")): np.array([1]), ("c", Timestamp("2018-03-01 00:00:00")): np.array([2]), } assert result == expected def test_rolling_wrong_param_min_period(): # GH34037 name_l = ["Alice"] * 5 + ["Bob"] * 5 val_l = [np.nan, np.nan, 1, 2, 3] + [np.nan, 1, 2, 3, 4] test_df = DataFrame([name_l, val_l]).T test_df.columns = ["name", "val"] result_error_msg = r"__init__\(\) got an unexpected keyword argument 'min_period'" with pytest.raises(TypeError, match=result_error_msg): test_df.groupby("name")["val"].rolling(window=2, min_period=1).sum() def test_pad_backfill_deprecation(): # GH 33396 s = Series([1, 2, 3]) with tm.assert_produces_warning(FutureWarning, match="backfill"): s.groupby(level=0).backfill() with tm.assert_produces_warning(FutureWarning, match="pad"): s.groupby(level=0).pad() def test_by_column_values_with_same_starting_value(): # GH29635 df = DataFrame( { "Name": ["Thomas", "Thomas", "Thomas John"], "Credit": [1200, 1300, 900], "Mood": ["sad", "happy", "happy"], } ) aggregate_details = {"Mood": Series.mode, "Credit": "sum"} result = df.groupby(["Name"]).agg(aggregate_details) expected_result = DataFrame( { "Mood": [["happy", "sad"], "happy"], "Credit": [2500, 900], "Name": ["Thomas", "Thomas John"], } ).set_index("Name") tm.assert_frame_equal(result, expected_result) def test_groupby_none_in_first_mi_level(): # GH#47348 arr = [[None, 1, 0, 1], [2, 3, 2, 3]] ser = Series(1, index=MultiIndex.from_arrays(arr, names=["a", "b"])) result = ser.groupby(level=[0, 1]).sum() expected = Series( [1, 2], MultiIndex.from_tuples([(0.0, 2), (1.0, 3)], names=["a", "b"]) ) tm.assert_series_equal(result, expected) def test_groupby_none_column_name(): # GH#47348 df = DataFrame({None: [1, 1, 2, 2], "b": [1, 1, 2, 3], "c": [4, 5, 6, 7]}) result = df.groupby(by=[None]).sum() expected = DataFrame({"b": [2, 5], "c": [9, 13]}, index=Index([1, 2], name=None)) tm.assert_frame_equal(result, expected) def test_single_element_list_grouping(): # GH 42795 df = DataFrame( {"a": [np.nan, 1], "b": [np.nan, 5], "c": [np.nan, 2]}, index=["x", "y"] ) msg = ( "In a future version of pandas, a length 1 " "tuple will be returned when iterating over " "a groupby with a grouper equal to a list of " "length 1. Don't supply a list with a single grouper " "to avoid this warning." ) with tm.assert_produces_warning(FutureWarning, match=msg): values, _ = next(iter(df.groupby(["a"]))) @pytest.mark.parametrize("func", ["sum", "cumsum", "prod"]) def test_groupby_avoid_casting_to_float(func): # GH#37493 val = 922337203685477580 df = DataFrame({"a": 1, "b": [val]}) result = getattr(df.groupby("a"), func)() - val expected = DataFrame({"b": [0]}, index=Index([1], name="a")) if func == "cumsum": expected = expected.reset_index(drop=True) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("func, val", [("sum", 3), ("prod", 2)]) def test_groupby_sum_support_mask(any_numeric_ea_dtype, func, val): # GH#37493 df = DataFrame({"a": 1, "b": [1, 2, pd.NA]}, dtype=any_numeric_ea_dtype) result = getattr(df.groupby("a"), func)() expected = DataFrame( {"b": [val]}, index=Index([1], name="a", dtype=any_numeric_ea_dtype), dtype=any_numeric_ea_dtype, ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("val, dtype", [(111, "int"), (222, "uint")]) def test_groupby_overflow(val, dtype): # GH#37493 df = DataFrame({"a": 1, "b": [val, val]}, dtype=f"{dtype}8") result = df.groupby("a").sum() expected = DataFrame( {"b": [val * 2]}, index=Index([1], name="a", dtype=f"{dtype}64"), dtype=f"{dtype}64", ) tm.assert_frame_equal(result, expected) result = df.groupby("a").cumsum() expected = DataFrame({"b": [val, val * 2]}, dtype=f"{dtype}64") tm.assert_frame_equal(result, expected) result = df.groupby("a").prod() expected = DataFrame( {"b": [val * val]}, index=Index([1], name="a", dtype=f"{dtype}64"), dtype=f"{dtype}64", ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("skipna, val", [(True, 3), (False, pd.NA)]) def test_groupby_cumsum_mask(any_numeric_ea_dtype, skipna, val): # GH#37493 df = DataFrame({"a": 1, "b": [1, pd.NA, 2]}, dtype=any_numeric_ea_dtype) result = df.groupby("a").cumsum(skipna=skipna) expected = DataFrame( {"b": [1, pd.NA, val]}, dtype=any_numeric_ea_dtype, ) tm.assert_frame_equal(result, expected)