from datetime import datetime import numpy as np import pytest from pandas._libs import lib import pandas as pd from pandas import ( DataFrame, NamedAgg, Series, ) import pandas._testing as tm from pandas.core.indexes.datetimes import date_range dti = date_range(start=datetime(2005, 1, 1), end=datetime(2005, 1, 10), freq="Min") test_series = Series(np.random.rand(len(dti)), dti) _test_frame = DataFrame({"A": test_series, "B": test_series, "C": np.arange(len(dti))}) @pytest.fixture def test_frame(): return _test_frame.copy() def test_str(): r = test_series.resample("H") assert ( "DatetimeIndexResampler [freq=, axis=0, closed=left, " "label=left, convention=start, origin=start_day]" in str(r) ) r = test_series.resample("H", origin="2000-01-01") assert ( "DatetimeIndexResampler [freq=, axis=0, closed=left, " "label=left, convention=start, origin=2000-01-01 00:00:00]" in str(r) ) def test_api(): r = test_series.resample("H") result = r.mean() assert isinstance(result, Series) assert len(result) == 217 r = test_series.to_frame().resample("H") result = r.mean() assert isinstance(result, DataFrame) assert len(result) == 217 def test_groupby_resample_api(): # GH 12448 # .groupby(...).resample(...) hitting warnings # when appropriate df = DataFrame( { "date": date_range(start="2016-01-01", periods=4, freq="W"), "group": [1, 1, 2, 2], "val": [5, 6, 7, 8], } ).set_index("date") # replication step i = ( date_range("2016-01-03", periods=8).tolist() + date_range("2016-01-17", periods=8).tolist() ) index = pd.MultiIndex.from_arrays([[1] * 8 + [2] * 8, i], names=["group", "date"]) expected = DataFrame({"val": [5] * 7 + [6] + [7] * 7 + [8]}, index=index) result = df.groupby("group").apply(lambda x: x.resample("1D").ffill())[["val"]] tm.assert_frame_equal(result, expected) def test_groupby_resample_on_api(): # GH 15021 # .groupby(...).resample(on=...) results in an unexpected # keyword warning. df = DataFrame( { "key": ["A", "B"] * 5, "dates": date_range("2016-01-01", periods=10), "values": np.random.randn(10), } ) msg = "The default value of numeric_only" with tm.assert_produces_warning(FutureWarning, match=msg): expected = df.set_index("dates").groupby("key").resample("D").mean() result = df.groupby("key").resample("D", on="dates").mean() tm.assert_frame_equal(result, expected) def test_resample_group_keys(): df = DataFrame({"A": 1, "B": 2}, index=date_range("2000", periods=10)) g = df.resample("5D") expected = df.copy() with tm.assert_produces_warning(FutureWarning, match="Not prepending group keys"): result = g.apply(lambda x: x) tm.assert_frame_equal(result, expected) # no warning g = df.resample("5D", group_keys=False) with tm.assert_produces_warning(None): result = g.apply(lambda x: x) tm.assert_frame_equal(result, expected) # no warning, group keys expected.index = pd.MultiIndex.from_arrays( [pd.to_datetime(["2000-01-01", "2000-01-06"]).repeat(5), expected.index] ) g = df.resample("5D", group_keys=True) with tm.assert_produces_warning(None): result = g.apply(lambda x: x) tm.assert_frame_equal(result, expected) def test_pipe(test_frame): # GH17905 # series r = test_series.resample("H") expected = r.max() - r.mean() result = r.pipe(lambda x: x.max() - x.mean()) tm.assert_series_equal(result, expected) # dataframe r = test_frame.resample("H") expected = r.max() - r.mean() result = r.pipe(lambda x: x.max() - x.mean()) tm.assert_frame_equal(result, expected) def test_getitem(test_frame): r = test_frame.resample("H") tm.assert_index_equal(r._selected_obj.columns, test_frame.columns) r = test_frame.resample("H")["B"] assert r._selected_obj.name == test_frame.columns[1] # technically this is allowed r = test_frame.resample("H")["A", "B"] tm.assert_index_equal(r._selected_obj.columns, test_frame.columns[[0, 1]]) r = test_frame.resample("H")["A", "B"] tm.assert_index_equal(r._selected_obj.columns, test_frame.columns[[0, 1]]) @pytest.mark.parametrize("key", [["D"], ["A", "D"]]) def test_select_bad_cols(key, test_frame): g = test_frame.resample("H") # 'A' should not be referenced as a bad column... # will have to rethink regex if you change message! msg = r"^\"Columns not found: 'D'\"$" with pytest.raises(KeyError, match=msg): g[key] def test_attribute_access(test_frame): r = test_frame.resample("H") tm.assert_series_equal(r.A.sum(), r["A"].sum()) @pytest.mark.parametrize("attr", ["groups", "ngroups", "indices"]) def test_api_compat_before_use(attr): # make sure that we are setting the binner # on these attributes rng = date_range("1/1/2012", periods=100, freq="S") ts = Series(np.arange(len(rng)), index=rng) rs = ts.resample("30s") # before use getattr(rs, attr) # after grouper is initialized is ok rs.mean() getattr(rs, attr) def tests_skip_nuisance(test_frame): df = test_frame df["D"] = "foo" r = df.resample("H") result = r[["A", "B"]].sum() expected = pd.concat([r.A.sum(), r.B.sum()], axis=1) tm.assert_frame_equal(result, expected) expected = r[["A", "B", "C"]].sum() msg = "The default value of numeric_only" with tm.assert_produces_warning(FutureWarning, match=msg): result = r.sum() tm.assert_frame_equal(result, expected) def test_downsample_but_actually_upsampling(): # this is reindex / asfreq rng = date_range("1/1/2012", periods=100, freq="S") ts = Series(np.arange(len(rng), dtype="int64"), index=rng) result = ts.resample("20s").asfreq() expected = Series( [0, 20, 40, 60, 80], index=date_range("2012-01-01 00:00:00", freq="20s", periods=5), ) tm.assert_series_equal(result, expected) def test_combined_up_downsampling_of_irregular(): # since we are really doing an operation like this # ts2.resample('2s').mean().ffill() # preserve these semantics rng = date_range("1/1/2012", periods=100, freq="S") ts = Series(np.arange(len(rng)), index=rng) ts2 = ts.iloc[[0, 1, 2, 3, 5, 7, 11, 15, 16, 25, 30]] result = ts2.resample("2s").mean().ffill() expected = Series( [ 0.5, 2.5, 5.0, 7.0, 7.0, 11.0, 11.0, 15.0, 16.0, 16.0, 16.0, 16.0, 25.0, 25.0, 25.0, 30.0, ], index=pd.DatetimeIndex( [ "2012-01-01 00:00:00", "2012-01-01 00:00:02", "2012-01-01 00:00:04", "2012-01-01 00:00:06", "2012-01-01 00:00:08", "2012-01-01 00:00:10", "2012-01-01 00:00:12", "2012-01-01 00:00:14", "2012-01-01 00:00:16", "2012-01-01 00:00:18", "2012-01-01 00:00:20", "2012-01-01 00:00:22", "2012-01-01 00:00:24", "2012-01-01 00:00:26", "2012-01-01 00:00:28", "2012-01-01 00:00:30", ], dtype="datetime64[ns]", freq="2S", ), ) tm.assert_series_equal(result, expected) def test_transform_series(): r = test_series.resample("20min") expected = test_series.groupby(pd.Grouper(freq="20min")).transform("mean") result = r.transform("mean") tm.assert_series_equal(result, expected) @pytest.mark.parametrize("on", [None, "date"]) def test_transform_frame(on): # GH#47079 index = date_range(datetime(2005, 1, 1), datetime(2005, 1, 10), freq="D") index.name = "date" df = DataFrame(np.random.rand(10, 2), columns=list("AB"), index=index) expected = df.groupby(pd.Grouper(freq="20min")).transform("mean") if on == "date": # Move date to being a column; result will then have a RangeIndex expected = expected.reset_index(drop=True) df = df.reset_index() r = df.resample("20min", on=on) result = r.transform("mean") tm.assert_frame_equal(result, expected) def test_fillna(): # need to upsample here rng = date_range("1/1/2012", periods=10, freq="2S") ts = Series(np.arange(len(rng), dtype="int64"), index=rng) r = ts.resample("s") expected = r.ffill() result = r.fillna(method="ffill") tm.assert_series_equal(result, expected) expected = r.bfill() result = r.fillna(method="bfill") tm.assert_series_equal(result, expected) msg = ( r"Invalid fill method\. Expecting pad \(ffill\), backfill " r"\(bfill\) or nearest\. Got 0" ) with pytest.raises(ValueError, match=msg): r.fillna(0) @pytest.mark.parametrize( "func", [ lambda x: x.resample("20min", group_keys=False), lambda x: x.groupby(pd.Grouper(freq="20min"), group_keys=False), ], ids=["resample", "groupby"], ) def test_apply_without_aggregation(func): # both resample and groupby should work w/o aggregation t = func(test_series) result = t.apply(lambda x: x) tm.assert_series_equal(result, test_series) def test_apply_without_aggregation2(): grouped = test_series.to_frame(name="foo").resample("20min", group_keys=False) result = grouped["foo"].apply(lambda x: x) tm.assert_series_equal(result, test_series.rename("foo")) def test_agg_consistency(): # make sure that we are consistent across # similar aggregations with and w/o selection list df = DataFrame( np.random.randn(1000, 3), index=date_range("1/1/2012", freq="S", periods=1000), columns=["A", "B", "C"], ) r = df.resample("3T") msg = r"Column\(s\) \['r1', 'r2'\] do not exist" with pytest.raises(KeyError, match=msg): r.agg({"r1": "mean", "r2": "sum"}) def test_agg_consistency_int_str_column_mix(): # GH#39025 df = DataFrame( np.random.randn(1000, 2), index=date_range("1/1/2012", freq="S", periods=1000), columns=[1, "a"], ) r = df.resample("3T") msg = r"Column\(s\) \[2, 'b'\] do not exist" with pytest.raises(KeyError, match=msg): r.agg({2: "mean", "b": "sum"}) # TODO(GH#14008): once GH 14008 is fixed, move these tests into # `Base` test class def test_agg(): # test with all three Resampler apis and TimeGrouper np.random.seed(1234) index = date_range(datetime(2005, 1, 1), datetime(2005, 1, 10), freq="D") index.name = "date" df = DataFrame(np.random.rand(10, 2), columns=list("AB"), index=index) df_col = df.reset_index() df_mult = df_col.copy() df_mult.index = pd.MultiIndex.from_arrays( [range(10), df.index], names=["index", "date"] ) r = df.resample("2D") cases = [ r, df_col.resample("2D", on="date"), df_mult.resample("2D", level="date"), df.groupby(pd.Grouper(freq="2D")), ] a_mean = r["A"].mean() a_std = r["A"].std() a_sum = r["A"].sum() b_mean = r["B"].mean() b_std = r["B"].std() b_sum = r["B"].sum() expected = pd.concat([a_mean, a_std, b_mean, b_std], axis=1) expected.columns = pd.MultiIndex.from_product([["A", "B"], ["mean", "std"]]) for t in cases: # In case 2, "date" is an index and a column, so agg still tries to agg warn = FutureWarning if t == cases[2] else None with tm.assert_produces_warning( warn, match=r"\['date'\] did not aggregate successfully", ): # .var on dt64 column raises and is dropped result = t.aggregate([np.mean, np.std]) tm.assert_frame_equal(result, expected) expected = pd.concat([a_mean, b_std], axis=1) for t in cases: result = t.aggregate({"A": np.mean, "B": np.std}) tm.assert_frame_equal(result, expected, check_like=True) result = t.aggregate(A=("A", np.mean), B=("B", np.std)) tm.assert_frame_equal(result, expected, check_like=True) result = t.aggregate(A=NamedAgg("A", np.mean), B=NamedAgg("B", np.std)) tm.assert_frame_equal(result, expected, check_like=True) expected = pd.concat([a_mean, a_std], axis=1) expected.columns = pd.MultiIndex.from_tuples([("A", "mean"), ("A", "std")]) for t in cases: result = t.aggregate({"A": ["mean", "std"]}) tm.assert_frame_equal(result, expected) expected = pd.concat([a_mean, a_sum], axis=1) expected.columns = ["mean", "sum"] for t in cases: result = t["A"].aggregate(["mean", "sum"]) tm.assert_frame_equal(result, expected) result = t["A"].aggregate(mean="mean", sum="sum") tm.assert_frame_equal(result, expected) msg = "nested renamer is not supported" for t in cases: with pytest.raises(pd.errors.SpecificationError, match=msg): t.aggregate({"A": {"mean": "mean", "sum": "sum"}}) expected = pd.concat([a_mean, a_sum, b_mean, b_sum], axis=1) expected.columns = pd.MultiIndex.from_tuples( [("A", "mean"), ("A", "sum"), ("B", "mean2"), ("B", "sum2")] ) for t in cases: with pytest.raises(pd.errors.SpecificationError, match=msg): t.aggregate( { "A": {"mean": "mean", "sum": "sum"}, "B": {"mean2": "mean", "sum2": "sum"}, } ) expected = pd.concat([a_mean, a_std, b_mean, b_std], axis=1) expected.columns = pd.MultiIndex.from_tuples( [("A", "mean"), ("A", "std"), ("B", "mean"), ("B", "std")] ) for t in cases: result = t.aggregate({"A": ["mean", "std"], "B": ["mean", "std"]}) tm.assert_frame_equal(result, expected, check_like=True) expected = pd.concat([a_mean, a_sum, b_mean, b_sum], axis=1) expected.columns = pd.MultiIndex.from_tuples( [ ("r1", "A", "mean"), ("r1", "A", "sum"), ("r2", "B", "mean"), ("r2", "B", "sum"), ] ) def test_agg_misc(): # test with all three Resampler apis and TimeGrouper np.random.seed(1234) index = date_range(datetime(2005, 1, 1), datetime(2005, 1, 10), freq="D") index.name = "date" df = DataFrame(np.random.rand(10, 2), columns=list("AB"), index=index) df_col = df.reset_index() df_mult = df_col.copy() df_mult.index = pd.MultiIndex.from_arrays( [range(10), df.index], names=["index", "date"] ) r = df.resample("2D") cases = [ r, df_col.resample("2D", on="date"), df_mult.resample("2D", level="date"), df.groupby(pd.Grouper(freq="2D")), ] # passed lambda for t in cases: result = t.agg({"A": np.sum, "B": lambda x: np.std(x, ddof=1)}) rcustom = t["B"].apply(lambda x: np.std(x, ddof=1)) expected = pd.concat([r["A"].sum(), rcustom], axis=1) tm.assert_frame_equal(result, expected, check_like=True) result = t.agg(A=("A", np.sum), B=("B", lambda x: np.std(x, ddof=1))) tm.assert_frame_equal(result, expected, check_like=True) result = t.agg( A=NamedAgg("A", np.sum), B=NamedAgg("B", lambda x: np.std(x, ddof=1)) ) tm.assert_frame_equal(result, expected, check_like=True) # agg with renamers expected = pd.concat( [t["A"].sum(), t["B"].sum(), t["A"].mean(), t["B"].mean()], axis=1 ) expected.columns = pd.MultiIndex.from_tuples( [("result1", "A"), ("result1", "B"), ("result2", "A"), ("result2", "B")] ) msg = r"Column\(s\) \['result1', 'result2'\] do not exist" for t in cases: with pytest.raises(KeyError, match=msg): t[["A", "B"]].agg({"result1": np.sum, "result2": np.mean}) with pytest.raises(KeyError, match=msg): t[["A", "B"]].agg(A=("result1", np.sum), B=("result2", np.mean)) with pytest.raises(KeyError, match=msg): t[["A", "B"]].agg( A=NamedAgg("result1", np.sum), B=NamedAgg("result2", np.mean) ) # agg with different hows expected = pd.concat( [t["A"].sum(), t["A"].std(), t["B"].mean(), t["B"].std()], axis=1 ) expected.columns = pd.MultiIndex.from_tuples( [("A", "sum"), ("A", "std"), ("B", "mean"), ("B", "std")] ) for t in cases: result = t.agg({"A": ["sum", "std"], "B": ["mean", "std"]}) tm.assert_frame_equal(result, expected, check_like=True) # equivalent of using a selection list / or not for t in cases: result = t[["A", "B"]].agg({"A": ["sum", "std"], "B": ["mean", "std"]}) tm.assert_frame_equal(result, expected, check_like=True) msg = "nested renamer is not supported" # series like aggs for t in cases: with pytest.raises(pd.errors.SpecificationError, match=msg): t["A"].agg({"A": ["sum", "std"]}) with pytest.raises(pd.errors.SpecificationError, match=msg): t["A"].agg({"A": ["sum", "std"], "B": ["mean", "std"]}) # errors # invalid names in the agg specification msg = r"Column\(s\) \['B'\] do not exist" for t in cases: with pytest.raises(KeyError, match=msg): t[["A"]].agg({"A": ["sum", "std"], "B": ["mean", "std"]}) @pytest.mark.parametrize( "func", [["min"], ["mean", "max"], {"A": "sum"}, {"A": "prod", "B": "median"}] ) def test_multi_agg_axis_1_raises(func): # GH#46904 np.random.seed(1234) index = date_range(datetime(2005, 1, 1), datetime(2005, 1, 10), freq="D") index.name = "date" df = DataFrame(np.random.rand(10, 2), columns=list("AB"), index=index).T res = df.resample("M", axis=1) with pytest.raises(NotImplementedError, match="axis other than 0 is not supported"): res.agg(func) def test_agg_nested_dicts(): np.random.seed(1234) index = date_range(datetime(2005, 1, 1), datetime(2005, 1, 10), freq="D") index.name = "date" df = DataFrame(np.random.rand(10, 2), columns=list("AB"), index=index) df_col = df.reset_index() df_mult = df_col.copy() df_mult.index = pd.MultiIndex.from_arrays( [range(10), df.index], names=["index", "date"] ) r = df.resample("2D") cases = [ r, df_col.resample("2D", on="date"), df_mult.resample("2D", level="date"), df.groupby(pd.Grouper(freq="2D")), ] msg = "nested renamer is not supported" for t in cases: with pytest.raises(pd.errors.SpecificationError, match=msg): t.aggregate({"r1": {"A": ["mean", "sum"]}, "r2": {"B": ["mean", "sum"]}}) for t in cases: with pytest.raises(pd.errors.SpecificationError, match=msg): t[["A", "B"]].agg( {"A": {"ra": ["mean", "std"]}, "B": {"rb": ["mean", "std"]}} ) with pytest.raises(pd.errors.SpecificationError, match=msg): t.agg({"A": {"ra": ["mean", "std"]}, "B": {"rb": ["mean", "std"]}}) def test_try_aggregate_non_existing_column(): # GH 16766 data = [ {"dt": datetime(2017, 6, 1, 0), "x": 1.0, "y": 2.0}, {"dt": datetime(2017, 6, 1, 1), "x": 2.0, "y": 2.0}, {"dt": datetime(2017, 6, 1, 2), "x": 3.0, "y": 1.5}, ] df = DataFrame(data).set_index("dt") # Error as we don't have 'z' column msg = r"Column\(s\) \['z'\] do not exist" with pytest.raises(KeyError, match=msg): df.resample("30T").agg({"x": ["mean"], "y": ["median"], "z": ["sum"]}) def test_selection_api_validation(): # GH 13500 index = date_range(datetime(2005, 1, 1), datetime(2005, 1, 10), freq="D") rng = np.arange(len(index), dtype=np.int64) df = DataFrame( {"date": index, "a": rng}, index=pd.MultiIndex.from_arrays([rng, index], names=["v", "d"]), ) df_exp = DataFrame({"a": rng}, index=index) # non DatetimeIndex msg = ( "Only valid with DatetimeIndex, TimedeltaIndex or PeriodIndex, " "but got an instance of 'Int64Index'" ) with pytest.raises(TypeError, match=msg): df.resample("2D", level="v") msg = "The Grouper cannot specify both a key and a level!" with pytest.raises(ValueError, match=msg): df.resample("2D", on="date", level="d") msg = "unhashable type: 'list'" with pytest.raises(TypeError, match=msg): df.resample("2D", on=["a", "date"]) msg = r"\"Level \['a', 'date'\] not found\"" with pytest.raises(KeyError, match=msg): df.resample("2D", level=["a", "date"]) # upsampling not allowed msg = ( "Upsampling from level= or on= selection is not supported, use " r"\.set_index\(\.\.\.\) to explicitly set index to datetime-like" ) with pytest.raises(ValueError, match=msg): df.resample("2D", level="d").asfreq() with pytest.raises(ValueError, match=msg): df.resample("2D", on="date").asfreq() exp = df_exp.resample("2D").sum() exp.index.name = "date" result = df.resample("2D", on="date").sum() tm.assert_frame_equal(exp, result) exp.index.name = "d" msg = "The default value of numeric_only" with tm.assert_produces_warning(FutureWarning, match=msg): result = df.resample("2D", level="d").sum() tm.assert_frame_equal(exp, result) @pytest.mark.parametrize( "col_name", ["t2", "t2x", "t2q", "T_2M", "t2p", "t2m", "t2m1", "T2M"] ) def test_agg_with_datetime_index_list_agg_func(col_name): # GH 22660 # The parametrized column names would get converted to dates by our # date parser. Some would result in OutOfBoundsError (ValueError) while # others would result in OverflowError when passed into Timestamp. # We catch these errors and move on to the correct branch. df = DataFrame( list(range(200)), index=date_range( start="2017-01-01", freq="15min", periods=200, tz="Europe/Berlin" ), columns=[col_name], ) result = df.resample("1d").aggregate(["mean"]) expected = DataFrame( [47.5, 143.5, 195.5], index=date_range(start="2017-01-01", freq="D", periods=3, tz="Europe/Berlin"), columns=pd.MultiIndex(levels=[[col_name], ["mean"]], codes=[[0], [0]]), ) tm.assert_frame_equal(result, expected) def test_resample_agg_readonly(): # GH#31710 cython needs to allow readonly data index = date_range("2020-01-01", "2020-01-02", freq="1h") arr = np.zeros_like(index) arr.setflags(write=False) ser = Series(arr, index=index) rs = ser.resample("1D") expected = Series([pd.Timestamp(0), pd.Timestamp(0)], index=index[::24]) result = rs.agg("last") tm.assert_series_equal(result, expected) result = rs.agg("first") tm.assert_series_equal(result, expected) result = rs.agg("max") tm.assert_series_equal(result, expected) result = rs.agg("min") tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "start,end,freq,data,resample_freq,origin,closed,exp_data,exp_end,exp_periods", [ ( "2000-10-01 23:30:00", "2000-10-02 00:26:00", "7min", [0, 3, 6, 9, 12, 15, 18, 21, 24], "17min", "end", None, [0, 18, 27, 63], "20001002 00:26:00", 4, ), ( "20200101 8:26:35", "20200101 9:31:58", "77s", [1] * 51, "7min", "end", "right", [1, 6, 5, 6, 5, 6, 5, 6, 5, 6], "2020-01-01 09:30:45", 10, ), ( "2000-10-01 23:30:00", "2000-10-02 00:26:00", "7min", [0, 3, 6, 9, 12, 15, 18, 21, 24], "17min", "end", "left", [0, 18, 27, 39, 24], "20001002 00:43:00", 5, ), ( "2000-10-01 23:30:00", "2000-10-02 00:26:00", "7min", [0, 3, 6, 9, 12, 15, 18, 21, 24], "17min", "end_day", None, [3, 15, 45, 45], "2000-10-02 00:29:00", 4, ), ], ) def test_end_and_end_day_origin( start, end, freq, data, resample_freq, origin, closed, exp_data, exp_end, exp_periods, ): rng = date_range(start, end, freq=freq) ts = Series(data, index=rng) res = ts.resample(resample_freq, origin=origin, closed=closed).sum() expected = Series( exp_data, index=date_range(end=exp_end, freq=resample_freq, periods=exp_periods), ) tm.assert_series_equal(res, expected) @pytest.mark.parametrize( # expected_data is a string when op raises a ValueError "method, numeric_only, expected_data", [ ("sum", True, {"num": [25]}), ("sum", False, {"cat": ["cat_1cat_2"], "num": [25]}), ("sum", lib.no_default, {"num": [25]}), ("prod", True, {"num": [100]}), ("prod", False, {"num": [100]}), ("prod", lib.no_default, {"num": [100]}), ("min", True, {"num": [5]}), ("min", False, {"cat": ["cat_1"], "num": [5]}), ("min", lib.no_default, {"cat": ["cat_1"], "num": [5]}), ("max", True, {"num": [20]}), ("max", False, {"cat": ["cat_2"], "num": [20]}), ("max", lib.no_default, {"cat": ["cat_2"], "num": [20]}), ("first", True, {"num": [5]}), ("first", False, {"cat": ["cat_1"], "num": [5]}), ("first", lib.no_default, {"cat": ["cat_1"], "num": [5]}), ("last", True, {"num": [20]}), ("last", False, {"cat": ["cat_2"], "num": [20]}), ("last", lib.no_default, {"cat": ["cat_2"], "num": [20]}), ("mean", True, {"num": [12.5]}), ("mean", False, {"num": [12.5]}), ("mean", lib.no_default, {"num": [12.5]}), ("median", True, {"num": [12.5]}), ("median", False, {"num": [12.5]}), ("median", lib.no_default, {"num": [12.5]}), ("std", True, {"num": [10.606601717798213]}), ("std", False, "could not convert string to float"), ("std", lib.no_default, {"num": [10.606601717798213]}), ("var", True, {"num": [112.5]}), ("var", False, "could not convert string to float"), ("var", lib.no_default, {"num": [112.5]}), ("sem", True, {"num": [7.5]}), ("sem", False, "could not convert string to float"), ("sem", lib.no_default, {"num": [7.5]}), ], ) def test_frame_downsample_method(method, numeric_only, expected_data): # GH#46442 test if `numeric_only` behave as expected for DataFrameGroupBy index = date_range("2018-01-01", periods=2, freq="D") expected_index = date_range("2018-12-31", periods=1, freq="Y") df = DataFrame({"cat": ["cat_1", "cat_2"], "num": [5, 20]}, index=index) resampled = df.resample("Y") if numeric_only is lib.no_default: kwargs = {} else: kwargs = {"numeric_only": numeric_only} func = getattr(resampled, method) if numeric_only is lib.no_default and method not in ( "min", "max", "first", "last", "prod", ): warn = FutureWarning msg = ( f"default value of numeric_only in DataFrameGroupBy.{method} is deprecated" ) elif method in ("prod", "mean", "median") and numeric_only is not True: warn = FutureWarning msg = f"Dropping invalid columns in DataFrameGroupBy.{method} is deprecated" else: warn = None msg = "" with tm.assert_produces_warning(warn, match=msg): if isinstance(expected_data, str): klass = TypeError if method == "var" else ValueError with pytest.raises(klass, match=expected_data): _ = func(**kwargs) else: result = func(**kwargs) expected = DataFrame(expected_data, index=expected_index) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "method, numeric_only, expected_data", [ ("sum", True, ()), ("sum", False, ["cat_1cat_2"]), ("sum", lib.no_default, ["cat_1cat_2"]), ("prod", True, ()), ("prod", False, ()), ("prod", lib.no_default, ()), ("min", True, ()), ("min", False, ["cat_1"]), ("min", lib.no_default, ["cat_1"]), ("max", True, ()), ("max", False, ["cat_2"]), ("max", lib.no_default, ["cat_2"]), ("first", True, ()), ("first", False, ["cat_1"]), ("first", lib.no_default, ["cat_1"]), ("last", True, ()), ("last", False, ["cat_2"]), ("last", lib.no_default, ["cat_2"]), ], ) def test_series_downsample_method(method, numeric_only, expected_data): # GH#46442 test if `numeric_only` behave as expected for SeriesGroupBy index = date_range("2018-01-01", periods=2, freq="D") expected_index = date_range("2018-12-31", periods=1, freq="Y") df = Series(["cat_1", "cat_2"], index=index) resampled = df.resample("Y") func = getattr(resampled, method) if numeric_only and numeric_only is not lib.no_default: with tm.assert_produces_warning( FutureWarning, match="This will raise a TypeError" ): with pytest.raises(NotImplementedError, match="not implement numeric_only"): func(numeric_only=numeric_only) elif method == "prod": with pytest.raises(TypeError, match="can't multiply sequence by non-int"): func(numeric_only=numeric_only) else: result = func(numeric_only=numeric_only) expected = Series(expected_data, index=expected_index) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("method", ["agg", "apply", "transform"]) def test_numeric_only_warning_numpy(method): # GH#50538 resampled = _test_frame.assign(D="x").resample("H") if method == "transform": msg = "The default value of numeric_only" with tm.assert_produces_warning(FutureWarning, match=msg): getattr(resampled, method)(np.mean) # Ensure users can pass numeric_only result = getattr(resampled, method)(np.mean, numeric_only=True) expected = resampled.transform("mean", numeric_only=True) tm.assert_frame_equal(result, expected) else: msg = "The operation