"""Convert python types to pydantic-core schema.""" from __future__ import annotations as _annotations import collections.abc import dataclasses import inspect import re import sys import typing import warnings from contextlib import ExitStack, contextmanager from copy import copy, deepcopy from enum import Enum from functools import partial from inspect import Parameter, _ParameterKind, signature from itertools import chain from operator import attrgetter from types import FunctionType, LambdaType, MethodType from typing import ( TYPE_CHECKING, Any, Callable, Dict, Final, ForwardRef, Iterable, Iterator, Mapping, Type, TypeVar, Union, cast, overload, ) from warnings import warn from pydantic_core import CoreSchema, PydanticUndefined, core_schema, to_jsonable_python from typing_extensions import Annotated, Literal, TypeAliasType, TypedDict, get_args, get_origin, is_typeddict from ..aliases import AliasGenerator from ..annotated_handlers import GetCoreSchemaHandler, GetJsonSchemaHandler from ..config import ConfigDict, JsonDict, JsonEncoder from ..errors import PydanticSchemaGenerationError, PydanticUndefinedAnnotation, PydanticUserError from ..json_schema import JsonSchemaValue from ..version import version_short from ..warnings import PydanticDeprecatedSince20 from . import _core_utils, _decorators, _discriminated_union, _known_annotated_metadata, _typing_extra from ._config import ConfigWrapper, ConfigWrapperStack from ._core_metadata import CoreMetadataHandler, build_metadata_dict from ._core_utils import ( CoreSchemaOrField, collect_invalid_schemas, define_expected_missing_refs, get_ref, get_type_ref, is_function_with_inner_schema, is_list_like_schema_with_items_schema, simplify_schema_references, validate_core_schema, ) from ._decorators import ( Decorator, DecoratorInfos, FieldSerializerDecoratorInfo, FieldValidatorDecoratorInfo, ModelSerializerDecoratorInfo, ModelValidatorDecoratorInfo, RootValidatorDecoratorInfo, ValidatorDecoratorInfo, get_attribute_from_bases, inspect_field_serializer, inspect_model_serializer, inspect_validator, ) from ._docs_extraction import extract_docstrings_from_cls from ._fields import collect_dataclass_fields, get_type_hints_infer_globalns from ._forward_ref import PydanticRecursiveRef from ._generics import get_standard_typevars_map, has_instance_in_type, recursively_defined_type_refs, replace_types from ._schema_generation_shared import CallbackGetCoreSchemaHandler from ._typing_extra import is_finalvar, is_self_type from ._utils import lenient_issubclass if TYPE_CHECKING: from ..fields import ComputedFieldInfo, FieldInfo from ..main import BaseModel from ..types import Discriminator from ..validators import FieldValidatorModes from ._dataclasses import StandardDataclass from ._schema_generation_shared import GetJsonSchemaFunction _SUPPORTS_TYPEDDICT = sys.version_info >= (3, 12) _AnnotatedType = type(Annotated[int, 123]) FieldDecoratorInfo = Union[ValidatorDecoratorInfo, FieldValidatorDecoratorInfo, FieldSerializerDecoratorInfo] FieldDecoratorInfoType = TypeVar('FieldDecoratorInfoType', bound=FieldDecoratorInfo) AnyFieldDecorator = Union[ Decorator[ValidatorDecoratorInfo], Decorator[FieldValidatorDecoratorInfo], Decorator[FieldSerializerDecoratorInfo], ] ModifyCoreSchemaWrapHandler = GetCoreSchemaHandler GetCoreSchemaFunction = Callable[[Any, ModifyCoreSchemaWrapHandler], core_schema.CoreSchema] TUPLE_TYPES: list[type] = [tuple, typing.Tuple] LIST_TYPES: list[type] = [list, typing.List, collections.abc.MutableSequence] SET_TYPES: list[type] = [set, typing.Set, collections.abc.MutableSet] FROZEN_SET_TYPES: list[type] = [frozenset, typing.FrozenSet, collections.abc.Set] DICT_TYPES: list[type] = [dict, typing.Dict, collections.abc.MutableMapping, collections.abc.Mapping] def check_validator_fields_against_field_name( info: FieldDecoratorInfo, field: str, ) -> bool: """Check if field name is in validator fields. Args: info: The field info. field: The field name to check. Returns: `True` if field name is in validator fields, `False` otherwise. """ if '*' in info.fields: return True for v_field_name in info.fields: if v_field_name == field: return True return False def check_decorator_fields_exist(decorators: Iterable[AnyFieldDecorator], fields: Iterable[str]) -> None: """Check if the defined fields in decorators exist in `fields` param. It ignores the check for a decorator if the decorator has `*` as field or `check_fields=False`. Args: decorators: An iterable of decorators. fields: An iterable of fields name. Raises: PydanticUserError: If one of the field names does not exist in `fields` param. """ fields = set(fields) for dec in decorators: if '*' in dec.info.fields: continue if dec.info.check_fields is False: continue for field in dec.info.fields: if field not in fields: raise PydanticUserError( f'Decorators defined with incorrect fields: {dec.cls_ref}.{dec.cls_var_name}' " (use check_fields=False if you're inheriting from the model and intended this)", code='decorator-missing-field', ) def filter_field_decorator_info_by_field( validator_functions: Iterable[Decorator[FieldDecoratorInfoType]], field: str ) -> list[Decorator[FieldDecoratorInfoType]]: return [dec for dec in validator_functions if check_validator_fields_against_field_name(dec.info, field)] def apply_each_item_validators( schema: core_schema.CoreSchema, each_item_validators: list[Decorator[ValidatorDecoratorInfo]], field_name: str | None, ) -> core_schema.CoreSchema: # This V1 compatibility shim should eventually be removed # push down any `each_item=True` validators # note that this won't work for any Annotated types that get wrapped by a function validator # but that's okay because that didn't exist in V1 if schema['type'] == 'nullable': schema['schema'] = apply_each_item_validators(schema['schema'], each_item_validators, field_name) return schema elif schema['type'] == 'tuple': if (variadic_item_index := schema.get('variadic_item_index')) is not None: schema['items_schema'][variadic_item_index] = apply_validators( schema['items_schema'][variadic_item_index], each_item_validators, field_name ) elif is_list_like_schema_with_items_schema(schema): inner_schema = schema.get('items_schema', None) if inner_schema is None: inner_schema = core_schema.any_schema() schema['items_schema'] = apply_validators(inner_schema, each_item_validators, field_name) elif schema['type'] == 'dict': # push down any `each_item=True` validators onto dict _values_ # this is super arbitrary but it's the V1 behavior inner_schema = schema.get('values_schema', None) if inner_schema is None: inner_schema = core_schema.any_schema() schema['values_schema'] = apply_validators(inner_schema, each_item_validators, field_name) elif each_item_validators: raise TypeError( f"`@validator(..., each_item=True)` cannot be applied to fields with a schema of {schema['type']}" ) return schema def modify_model_json_schema( schema_or_field: CoreSchemaOrField, handler: GetJsonSchemaHandler, *, cls: Any ) -> JsonSchemaValue: """Add title and description for model-like classes' JSON schema. Args: schema_or_field: The schema data to generate a JSON schema from. handler: The `GetCoreSchemaHandler` instance. cls: The model-like class. Returns: JsonSchemaValue: The updated JSON schema. """ from ..main import BaseModel from ..root_model import RootModel json_schema = handler(schema_or_field) original_schema = handler.resolve_ref_schema(json_schema) # Preserve the fact that definitions schemas should never have sibling keys: if '$ref' in original_schema: ref = original_schema['$ref'] original_schema.clear() original_schema['allOf'] = [{'$ref': ref}] if 'title' not in original_schema: original_schema['title'] = cls.__name__ # BaseModel; don't use cls.__doc__ as it will contain the verbose class signature by default docstring = None if cls is BaseModel else cls.__doc__ if docstring and 'description' not in original_schema: original_schema['description'] = inspect.cleandoc(docstring) elif issubclass(cls, RootModel) and cls.model_fields['root'].description: original_schema['description'] = cls.model_fields['root'].description return json_schema JsonEncoders = Dict[Type[Any], JsonEncoder] def _add_custom_serialization_from_json_encoders( json_encoders: JsonEncoders | None, tp: Any, schema: CoreSchema ) -> CoreSchema: """Iterate over the json_encoders and add the first matching encoder to the schema. Args: json_encoders: A dictionary of types and their encoder functions. tp: The type to check for a matching encoder. schema: The schema to add the encoder to. """ if not json_encoders: return schema if 'serialization' in schema: return schema # Check the class type and its superclasses for a matching encoder # Decimal.__class__.__mro__ (and probably other cases) doesn't include Decimal itself # if the type is a GenericAlias (e.g. from list[int]) we need to use __class__ instead of .__mro__ for base in (tp, *getattr(tp, '__mro__', tp.__class__.__mro__)[:-1]): encoder = json_encoders.get(base) if encoder is None: continue warnings.warn( f'`json_encoders` is deprecated. See https://docs.pydantic.dev/{version_short()}/concepts/serialization/#custom-serializers for alternatives', PydanticDeprecatedSince20, ) # TODO: in theory we should check that the schema accepts a serialization key schema['serialization'] = core_schema.plain_serializer_function_ser_schema(encoder, when_used='json') return schema return schema TypesNamespace = Union[Dict[str, Any], None] class TypesNamespaceStack: """A stack of types namespaces.""" def __init__(self, types_namespace: TypesNamespace): self._types_namespace_stack: list[TypesNamespace] = [types_namespace] @property def tail(self) -> TypesNamespace: return self._types_namespace_stack[-1] @contextmanager def push(self, for_type: type[Any]): types_namespace = {**_typing_extra.get_cls_types_namespace(for_type), **(self.tail or {})} self._types_namespace_stack.append(types_namespace) try: yield finally: self._types_namespace_stack.pop() def _get_first_non_null(a: Any, b: Any) -> Any: """Return the first argument if it is not None, otherwise return the second argument. Use case: serialization_alias (argument a) and alias (argument b) are both defined, and serialization_alias is ''. This function will return serialization_alias, which is the first argument, even though it is an empty string. """ return a if a is not None else b class GenerateSchema: """Generate core schema for a Pydantic model, dataclass and types like `str`, `datetime`, ... .""" __slots__ = ( '_config_wrapper_stack', '_types_namespace_stack', '_typevars_map', 'field_name_stack', 'model_type_stack', 'defs', ) def __init__( self, config_wrapper: ConfigWrapper, types_namespace: dict[str, Any] | None, typevars_map: dict[Any, Any] | None = None, ) -> None: # we need a stack for recursing into child models self._config_wrapper_stack = ConfigWrapperStack(config_wrapper) self._types_namespace_stack = TypesNamespaceStack(types_namespace) self._typevars_map = typevars_map self.field_name_stack = _FieldNameStack() self.model_type_stack = _ModelTypeStack() self.defs = _Definitions() @classmethod def __from_parent( cls, config_wrapper_stack: ConfigWrapperStack, types_namespace_stack: TypesNamespaceStack, model_type_stack: _ModelTypeStack, typevars_map: dict[Any, Any] | None, defs: _Definitions, ) -> GenerateSchema: obj = cls.__new__(cls) obj._config_wrapper_stack = config_wrapper_stack obj._types_namespace_stack = types_namespace_stack obj.model_type_stack = model_type_stack obj._typevars_map = typevars_map obj.field_name_stack = _FieldNameStack() obj.defs = defs return obj @property def _config_wrapper(self) -> ConfigWrapper: return self._config_wrapper_stack.tail @property def _types_namespace(self) -> dict[str, Any] | None: return self._types_namespace_stack.tail @property def _current_generate_schema(self) -> GenerateSchema: cls = self._config_wrapper.schema_generator or GenerateSchema return cls.__from_parent( self._config_wrapper_stack, self._types_namespace_stack, self.model_type_stack, self._typevars_map, self.defs, ) @property def _arbitrary_types(self) -> bool: return self._config_wrapper.arbitrary_types_allowed def str_schema(self) -> CoreSchema: """Generate a CoreSchema for `str`""" return core_schema.str_schema() # the following methods can be overridden but should be considered # unstable / private APIs def _list_schema(self, tp: Any, items_type: Any) -> CoreSchema: return core_schema.list_schema(self.generate_schema(items_type)) def _dict_schema(self, tp: Any, keys_type: Any, values_type: Any) -> CoreSchema: return core_schema.dict_schema(self.generate_schema(keys_type), self.generate_schema(values_type)) def _set_schema(self, tp: Any, items_type: Any) -> CoreSchema: return core_schema.set_schema(self.generate_schema(items_type)) def _frozenset_schema(self, tp: Any, items_type: Any) -> CoreSchema: return core_schema.frozenset_schema(self.generate_schema(items_type)) def _arbitrary_type_schema(self, tp: Any) -> CoreSchema: if not isinstance(tp, type): warn( f'{tp!r} is not a Python type (it may be an instance of an object),' ' Pydantic will allow any object with no validation since we cannot even' ' enforce that the input is an instance of the given type.' ' To get rid of this error wrap the type with `pydantic.SkipValidation`.', UserWarning, ) return core_schema.any_schema() return core_schema.is_instance_schema(tp) def _unknown_type_schema(self, obj: Any) -> CoreSchema: raise PydanticSchemaGenerationError( f'Unable to generate pydantic-core schema for {obj!r}. ' 'Set `arbitrary_types_allowed=True` in the model_config to ignore this error' ' or implement `__get_pydantic_core_schema__` on your type to fully support it.' '\n\nIf you got this error by calling handler() within' ' `__get_pydantic_core_schema__` then you likely need to call' ' `handler.generate_schema()` since we do not call' ' `__get_pydantic_core_schema__` on `` otherwise to avoid infinite recursion.' ) def _apply_discriminator_to_union( self, schema: CoreSchema, discriminator: str | Discriminator | None ) -> CoreSchema: if discriminator is None: return schema try: return _discriminated_union.apply_discriminator( schema, discriminator, ) except _discriminated_union.MissingDefinitionForUnionRef: # defer until defs are resolved _discriminated_union.set_discriminator_in_metadata( schema, discriminator, ) return schema class CollectedInvalid(Exception): pass def clean_schema(self, schema: CoreSchema) -> CoreSchema: schema = self.collect_definitions(schema) schema = simplify_schema_references(schema) if collect_invalid_schemas(schema): raise self.CollectedInvalid() schema = _discriminated_union.apply_discriminators(schema) schema = validate_core_schema(schema) return schema def collect_definitions(self, schema: CoreSchema) -> CoreSchema: ref = cast('str | None', schema.get('ref', None)) if ref: self.defs.definitions[ref] = schema if 'ref' in schema: schema = core_schema.definition_reference_schema(schema['ref']) return core_schema.definitions_schema( schema, list(self.defs.definitions.values()), ) def _add_js_function(self, metadata_schema: CoreSchema, js_function: Callable[..., Any]) -> None: metadata = CoreMetadataHandler(metadata_schema).metadata pydantic_js_functions = metadata.setdefault('pydantic_js_functions', []) # because of how we generate core schemas for nested generic models # we can end up adding `BaseModel.__get_pydantic_json_schema__` multiple times # this check may fail to catch duplicates if the function is a `functools.partial` # or something like that # but if it does it'll fail by inserting the duplicate if js_function not in pydantic_js_functions: pydantic_js_functions.append(js_function) def generate_schema( self, obj: Any, from_dunder_get_core_schema: bool = True, ) -> core_schema.CoreSchema: """Generate core schema. Args: obj: The object to generate core schema for. from_dunder_get_core_schema: Whether to generate schema from either the `__get_pydantic_core_schema__` function or `__pydantic_core_schema__` property. Returns: The generated core schema. Raises: PydanticUndefinedAnnotation: If it is not possible to evaluate forward reference. PydanticSchemaGenerationError: If it is not possible to generate pydantic-core schema. TypeError: - If `alias_generator` returns a disallowed type (must be str, AliasPath or AliasChoices). - If V1 style validator with `each_item=True` applied on a wrong field. PydanticUserError: - If `typing.TypedDict` is used instead of `typing_extensions.TypedDict` on Python < 3.12. - If `__modify_schema__` method is used instead of `__get_pydantic_json_schema__`. """ schema: CoreSchema | None = None if from_dunder_get_core_schema: from_property = self._generate_schema_from_property(obj, obj) if from_property is not None: schema = from_property if schema is None: schema = self._generate_schema_inner(obj) metadata_js_function = _extract_get_pydantic_json_schema(obj, schema) if metadata_js_function is not None: metadata_schema = resolve_original_schema(schema, self.defs.definitions) if metadata_schema: self._add_js_function(metadata_schema, metadata_js_function) schema = _add_custom_serialization_from_json_encoders(self._config_wrapper.json_encoders, obj, schema) return schema def _model_schema(self, cls: type[BaseModel]) -> core_schema.CoreSchema: """Generate schema for a Pydantic model.""" with self.defs.get_schema_or_ref(cls) as (model_ref, maybe_schema): if maybe_schema is not None: return maybe_schema fields = cls.model_fields decorators = cls.__pydantic_decorators__ computed_fields = decorators.computed_fields check_decorator_fields_exist( chain( decorators.field_validators.values(), decorators.field_serializers.values(), decorators.validators.values(), ), {*fields.keys(), *computed_fields.keys()}, ) config_wrapper = ConfigWrapper(cls.model_config, check=False) core_config = config_wrapper.core_config(cls) metadata = build_metadata_dict(js_functions=[partial(modify_model_json_schema, cls=cls)]) model_validators = decorators.model_validators.values() extras_schema = None if core_config.get('extra_fields_behavior') == 'allow': assert cls.__mro__[0] is cls assert cls.__mro__[-1] is object for candidate_cls in cls.__mro__[:-1]: extras_annotation = getattr(candidate_cls, '__annotations__', {}).get('__pydantic_extra__', None) if extras_annotation is not None: if isinstance(extras_annotation, str): extras_annotation = _typing_extra.eval_type_backport( _typing_extra._make_forward_ref(extras_annotation, is_argument=False, is_class=True), self._types_namespace, ) tp = get_origin(extras_annotation) if tp not in (Dict, dict): raise PydanticSchemaGenerationError( 'The type annotation for `__pydantic_extra__` must be `Dict[str, ...]`' ) extra_items_type = self._get_args_resolving_forward_refs( extras_annotation, required=True, )[1] if extra_items_type is not Any: extras_schema = self.generate_schema(extra_items_type) break with self._config_wrapper_stack.push(config_wrapper), self._types_namespace_stack.push(cls): self = self._current_generate_schema if cls.__pydantic_root_model__: root_field = self._common_field_schema('root', fields['root'], decorators) inner_schema = root_field['schema'] inner_schema = apply_model_validators(inner_schema, model_validators, 'inner') model_schema = core_schema.model_schema( cls, inner_schema, custom_init=getattr(cls, '__pydantic_custom_init__', None), root_model=True, post_init=getattr(cls, '__pydantic_post_init__', None), config=core_config, ref=model_ref, metadata=metadata, ) else: fields_schema: core_schema.CoreSchema = core_schema.model_fields_schema( {k: self._generate_md_field_schema(k, v, decorators) for k, v in fields.items()}, computed_fields=[ self._computed_field_schema(d, decorators.field_serializers) for d in computed_fields.values() ], extras_schema=extras_schema, model_name=cls.__name__, ) inner_schema = apply_validators(fields_schema, decorators.root_validators.values(), None) new_inner_schema = define_expected_missing_refs(inner_schema, recursively_defined_type_refs()) if new_inner_schema is not None: inner_schema = new_inner_schema inner_schema = apply_model_validators(inner_schema, model_validators, 'inner') model_schema = core_schema.model_schema( cls, inner_schema, custom_init=getattr(cls, '__pydantic_custom_init__', None), root_model=False, post_init=getattr(cls, '__pydantic_post_init__', None), config=core_config, ref=model_ref, metadata=metadata, ) schema = self._apply_model_serializers(model_schema, decorators.model_serializers.values()) schema = apply_model_validators(schema, model_validators, 'outer') self.defs.definitions[model_ref] = schema return core_schema.definition_reference_schema(model_ref) def _unpack_refs_defs(self, schema: CoreSchema) -> CoreSchema: """Unpack all 'definitions' schemas into `GenerateSchema.defs.definitions` and return the inner schema. """ def get_ref(s: CoreSchema) -> str: return s['ref'] # type: ignore if schema['type'] == 'definitions': self.defs.definitions.update({get_ref(s): s for s in schema['definitions']}) schema = schema['schema'] return schema def _generate_schema_from_property(self, obj: Any, source: Any) -> core_schema.CoreSchema | None: """Try to generate schema from either the `__get_pydantic_core_schema__` function or `__pydantic_core_schema__` property. Note: `__get_pydantic_core_schema__` takes priority so it can decide whether to use a `__pydantic_core_schema__` attribute, or generate a fresh schema. """ # avoid calling `__get_pydantic_core_schema__` if we've already visited this object if is_self_type(obj): obj = self.model_type_stack.get() with self.defs.get_schema_or_ref(obj) as (_, maybe_schema): if maybe_schema is not None: return maybe_schema if obj is source: ref_mode = 'unpack' else: ref_mode = 'to-def' schema: CoreSchema if (get_schema := getattr(obj, '__get_pydantic_core_schema__', None)) is not None: if len(inspect.signature(get_schema).parameters) == 1: # (source) -> CoreSchema schema = get_schema(source) else: schema = get_schema( source, CallbackGetCoreSchemaHandler(self._generate_schema_inner, self, ref_mode=ref_mode) ) # fmt: off elif (existing_schema := getattr(obj, '__pydantic_core_schema__', None)) is not None and existing_schema.get( 'cls', None ) == obj: schema = existing_schema # fmt: on elif (validators := getattr(obj, '__get_validators__', None)) is not None: warn( '`__get_validators__` is deprecated and will be removed, use `__get_pydantic_core_schema__` instead.', PydanticDeprecatedSince20, ) schema = core_schema.chain_schema([core_schema.with_info_plain_validator_function(v) for v in validators()]) else: # we have no existing schema information on the property, exit early so that we can go generate a schema return None schema = self._unpack_refs_defs(schema) if is_function_with_inner_schema(schema): ref = schema['schema'].pop('ref', None) # pyright: ignore[reportGeneralTypeIssues] if ref: schema['ref'] = ref else: ref = get_ref(schema) if ref: self.defs.definitions[ref] = schema return core_schema.definition_reference_schema(ref) return schema def _resolve_forward_ref(self, obj: Any) -> Any: # we assume that types_namespace has the target of forward references in its scope, # but this could fail, for example, if calling Validator on an imported type which contains # forward references to other types only defined in the module from which it was imported # `Validator(SomeImportedTypeAliasWithAForwardReference)` # or the equivalent for BaseModel # class Model(BaseModel): # x: SomeImportedTypeAliasWithAForwardReference try: obj = _typing_extra.eval_type_backport(obj, globalns=self._types_namespace) except NameError as e: raise PydanticUndefinedAnnotation.from_name_error(e) from e # if obj is still a ForwardRef, it means we can't evaluate it, raise PydanticUndefinedAnnotation if isinstance(obj, ForwardRef): raise PydanticUndefinedAnnotation(obj.__forward_arg__, f'Unable to evaluate forward reference {obj}') if self._typevars_map: obj = replace_types(obj, self._typevars_map) return obj @overload def _get_args_resolving_forward_refs(self, obj: Any, required: Literal[True]) -> tuple[Any, ...]: ... @overload def _get_args_resolving_forward_refs(self, obj: Any) -> tuple[Any, ...] | None: ... def _get_args_resolving_forward_refs(self, obj: Any, required: bool = False) -> tuple[Any, ...] | None: args = get_args(obj) if args: args = tuple([self._resolve_forward_ref(a) if isinstance(a, ForwardRef) else a for a in args]) elif required: # pragma: no cover raise TypeError(f'Expected {obj} to have generic parameters but it had none') return args def _get_first_arg_or_any(self, obj: Any) -> Any: args = self._get_args_resolving_forward_refs(obj) if not args: return Any return args[0] def _get_first_two_args_or_any(self, obj: Any) -> tuple[Any, Any]: args = self._get_args_resolving_forward_refs(obj) if not args: return (Any, Any) if len(args) < 2: origin = get_origin(obj) raise TypeError(f'Expected two type arguments for {origin}, got 1') return args[0], args[1] def _generate_schema_inner(self, obj: Any) -> core_schema.CoreSchema: if isinstance(obj, _AnnotatedType): return self._annotated_schema(obj) if isinstance(obj, dict): # we assume this is already a valid schema return obj # type: ignore[return-value] if isinstance(obj, str): obj = ForwardRef(obj) if isinstance(obj, ForwardRef): return self.generate_schema(self._resolve_forward_ref(obj)) from ..main import BaseModel if lenient_issubclass(obj, BaseModel): with self.model_type_stack.push(obj): return self._model_schema(obj) if isinstance(obj, PydanticRecursiveRef): return core_schema.definition_reference_schema(schema_ref=obj.type_ref) return self.match_type(obj) def match_type(self, obj: Any) -> core_schema.CoreSchema: # noqa: C901 """Main mapping of types to schemas. The general structure is a series of if statements starting with the simple cases (non-generic primitive types) and then handling generics and other more complex cases. Each case either generates a schema directly, calls into a public user-overridable method (like `GenerateSchema.tuple_variable_schema`) or calls into a private method that handles some boilerplate before calling into the user-facing method (e.g. `GenerateSchema._tuple_schema`). The idea is that we'll evolve this into adding more and more user facing methods over time as they get requested and we figure out what the right API for them is. """ if obj is str: return self.str_schema() elif obj is bytes: return core_schema.bytes_schema() elif obj is int: return core_schema.int_schema() elif obj is float: return core_schema.float_schema() elif obj is bool: return core_schema.bool_schema() elif obj is Any or obj is object: return core_schema.any_schema() elif obj is None or obj is _typing_extra.NoneType: return core_schema.none_schema() elif obj in TUPLE_TYPES: return self._tuple_schema(obj) elif obj in LIST_TYPES: return self._list_schema(obj, self._get_first_arg_or_any(obj)) elif obj in SET_TYPES: return self._set_schema(obj, self._get_first_arg_or_any(obj)) elif obj in FROZEN_SET_TYPES: return self._frozenset_schema(obj, self._get_first_arg_or_any(obj)) elif obj in DICT_TYPES: return self._dict_schema(obj, *self._get_first_two_args_or_any(obj)) elif isinstance(obj, TypeAliasType): return self._type_alias_type_schema(obj) elif obj == type: return self._type_schema() elif _typing_extra.is_callable_type(obj): return core_schema.callable_schema() elif _typing_extra.is_literal_type(obj): return self._literal_schema(obj) elif is_typeddict(obj): return self._typed_dict_schema(obj, None) elif _typing_extra.is_namedtuple(obj): return self._namedtuple_schema(obj, None) elif _typing_extra.is_new_type(obj): # NewType, can't use isinstance because it fails <3.10 return self.generate_schema(obj.__supertype__) elif obj == re.Pattern: return self._pattern_schema(obj) elif obj is collections.abc.Hashable or obj is typing.Hashable: return self._hashable_schema() elif isinstance(obj, typing.TypeVar): return self._unsubstituted_typevar_schema(obj) elif is_finalvar(obj): if obj is Final: return core_schema.any_schema() return self.generate_schema( self._get_first_arg_or_any(obj), ) elif isinstance(obj, (FunctionType, LambdaType, MethodType, partial)): return self._callable_schema(obj) elif inspect.isclass(obj) and issubclass(obj, Enum): from ._std_types_schema import get_enum_core_schema return get_enum_core_schema(obj, self._config_wrapper.config_dict) if _typing_extra.is_dataclass(obj): return self._dataclass_schema(obj, None) res = self._get_prepare_pydantic_annotations_for_known_type(obj, ()) if res is not None: source_type, annotations = res return self._apply_annotations(source_type, annotations) origin = get_origin(obj) if origin is not None: return self._match_generic_type(obj, origin) if self._arbitrary_types: return self._arbitrary_type_schema(obj) return self._unknown_type_schema(obj) def _match_generic_type(self, obj: Any, origin: Any) -> CoreSchema: # noqa: C901 if isinstance(origin, TypeAliasType): return self._type_alias_type_schema(obj) # Need to handle generic dataclasses before looking for the schema properties because attribute accesses # on _GenericAlias delegate to the origin type, so lose the information about the concrete parametrization # As a result, currently, there is no way to cache the schema for generic dataclasses. This may be possible # to resolve by modifying the value returned by `Generic.__class_getitem__`, but that is a dangerous game. if _typing_extra.is_dataclass(origin): return self._dataclass_schema(obj, origin) if _typing_extra.is_namedtuple(origin): return self._namedtuple_schema(obj, origin) from_property = self._generate_schema_from_property(origin, obj) if from_property is not None: return from_property if _typing_extra.origin_is_union(origin): return self._union_schema(obj) elif origin in TUPLE_TYPES: return self._tuple_schema(obj) elif origin in LIST_TYPES: return self._list_schema(obj, self._get_first_arg_or_any(obj)) elif origin in SET_TYPES: return self._set_schema(obj, self._get_first_arg_or_any(obj)) elif origin in FROZEN_SET_TYPES: return self._frozenset_schema(obj, self._get_first_arg_or_any(obj)) elif origin in DICT_TYPES: return self._dict_schema(obj, *self._get_first_two_args_or_any(obj)) elif is_typeddict(origin): return self._typed_dict_schema(obj, origin) elif origin in (typing.Type, type): return self._subclass_schema(obj) elif origin in {typing.Sequence, collections.abc.Sequence}: return self._sequence_schema(obj) elif origin in {typing.Iterable, collections.abc.Iterable, typing.Generator, collections.abc.Generator}: return self._iterable_schema(obj) elif origin in (re.Pattern, typing.Pattern): return self._pattern_schema(obj) if self._arbitrary_types: return self._arbitrary_type_schema(origin) return self._unknown_type_schema(obj) def _generate_td_field_schema( self, name: str, field_info: FieldInfo, decorators: DecoratorInfos, *, required: bool = True, ) -> core_schema.TypedDictField: """Prepare a TypedDictField to represent a model or typeddict field.""" common_field = self._common_field_schema(name, field_info, decorators) return core_schema.typed_dict_field( common_field['schema'], required=False if not field_info.is_required() else required, serialization_exclude=common_field['serialization_exclude'], validation_alias=common_field['validation_alias'], serialization_alias=common_field['serialization_alias'], metadata=common_field['metadata'], ) def _generate_md_field_schema( self, name: str, field_info: FieldInfo, decorators: DecoratorInfos, ) -> core_schema.ModelField: """Prepare a ModelField to represent a model field.""" common_field = self._common_field_schema(name, field_info, decorators) return core_schema.model_field( common_field['schema'], serialization_exclude=common_field['serialization_exclude'], validation_alias=common_field['validation_alias'], serialization_alias=common_field['serialization_alias'], frozen=common_field['frozen'], metadata=common_field['metadata'], ) def _generate_dc_field_schema( self, name: str, field_info: FieldInfo, decorators: DecoratorInfos, ) -> core_schema.DataclassField: """Prepare a DataclassField to represent the parameter/field, of a dataclass.""" common_field = self._common_field_schema(name, field_info, decorators) return core_schema.dataclass_field( name, common_field['schema'], init=field_info.init, init_only=field_info.init_var or None, kw_only=None if field_info.kw_only else False, serialization_exclude=common_field['serialization_exclude'], validation_alias=common_field['validation_alias'], serialization_alias=common_field['serialization_alias'], frozen=common_field['frozen'], metadata=common_field['metadata'], ) @staticmethod def _apply_alias_generator_to_field_info( alias_generator: Callable[[str], str] | AliasGenerator, field_info: FieldInfo, field_name: str ) -> None: """Apply an alias_generator to aliases on a FieldInfo instance if appropriate. Args: alias_generator: A callable that takes a string and returns a string, or an AliasGenerator instance. field_info: The FieldInfo instance to which the alias_generator is (maybe) applied. field_name: The name of the field from which to generate the alias. """ # Apply an alias_generator if # 1. An alias is not specified # 2. An alias is specified, but the priority is <= 1 if ( field_info.alias_priority is None or field_info.alias_priority <= 1 or field_info.alias is None or field_info.validation_alias is None or field_info.serialization_alias is None ): alias, validation_alias, serialization_alias = None, None, None if isinstance(alias_generator, AliasGenerator): alias, validation_alias, serialization_alias = alias_generator.generate_aliases(field_name) elif isinstance(alias_generator, Callable): alias = alias_generator(field_name) if not isinstance(alias, str): raise TypeError(f'alias_generator {alias_generator} must return str, not {alias.__class__}') # if priority is not set, we set to 1 # which supports the case where the alias_generator from a child class is used # to generate an alias for a field in a parent class if field_info.alias_priority is None or field_info.alias_priority <= 1: field_info.alias_priority = 1 # if the priority is 1, then we set the aliases to the generated alias if field_info.alias_priority == 1: field_info.serialization_alias = _get_first_non_null(serialization_alias, alias) field_info.validation_alias = _get_first_non_null(validation_alias, alias) field_info.alias = alias # if any of the aliases are not set, then we set them to the corresponding generated alias if field_info.alias is None: field_info.alias = alias if field_info.serialization_alias is None: field_info.serialization_alias = _get_first_non_null(serialization_alias, alias) if field_info.validation_alias is None: field_info.validation_alias = _get_first_non_null(validation_alias, alias) @staticmethod def _apply_alias_generator_to_computed_field_info( alias_generator: Callable[[str], str] | AliasGenerator, computed_field_info: ComputedFieldInfo, computed_field_name: str, ): """Apply an alias_generator to alias on a ComputedFieldInfo instance if appropriate. Args: alias_generator: A callable that takes a string and returns a string, or an AliasGenerator instance. computed_field_info: The ComputedFieldInfo instance to which the alias_generator is (maybe) applied. computed_field_name: The name of the computed field from which to generate the alias. """ # Apply an alias_generator if # 1. An alias is not specified # 2. An alias is specified, but the priority is <= 1 if ( computed_field_info.alias_priority is None or computed_field_info.alias_priority <= 1 or computed_field_info.alias is None ): alias, validation_alias, serialization_alias = None, None, None if isinstance(alias_generator, AliasGenerator): alias, validation_alias, serialization_alias = alias_generator.generate_aliases(computed_field_name) elif isinstance(alias_generator, Callable): alias = alias_generator(computed_field_name) if not isinstance(alias, str): raise TypeError(f'alias_generator {alias_generator} must return str, not {alias.__class__}') # if priority is not set, we set to 1 # which supports the case where the alias_generator from a child class is used # to generate an alias for a field in a parent class if computed_field_info.alias_priority is None or computed_field_info.alias_priority <= 1: computed_field_info.alias_priority = 1 # if the priority is 1, then we set the aliases to the generated alias # note that we use the serialization_alias with priority over alias, as computed_field # aliases are used for serialization only (not validation) if computed_field_info.alias_priority == 1: computed_field_info.alias = _get_first_non_null(serialization_alias, alias) def _common_field_schema( # C901 self, name: str, field_info: FieldInfo, decorators: DecoratorInfos ) -> _CommonField: # Update FieldInfo annotation if appropriate: from .. import AliasChoices, AliasPath from ..fields import FieldInfo if has_instance_in_type(field_info.annotation, (ForwardRef, str)): types_namespace = self._types_namespace if self._typevars_map: types_namespace = (types_namespace or {}).copy() # Ensure that typevars get mapped to their concrete types: types_namespace.update({k.__name__: v for k, v in self._typevars_map.items()}) evaluated = _typing_extra.eval_type_lenient(field_info.annotation, types_namespace) if evaluated is not field_info.annotation and not has_instance_in_type(evaluated, PydanticRecursiveRef): new_field_info = FieldInfo.from_annotation(evaluated) field_info.annotation = new_field_info.annotation # Handle any field info attributes that may have been obtained from now-resolved annotations for k, v in new_field_info._attributes_set.items(): # If an attribute is already set, it means it was set by assigning to a call to Field (or just a # default value), and that should take the highest priority. So don't overwrite existing attributes. # We skip over "attributes" that are present in the metadata_lookup dict because these won't # actually end up as attributes of the `FieldInfo` instance. if k not in field_info._attributes_set and k not in field_info.metadata_lookup: setattr(field_info, k, v) # Finally, ensure the field info also reflects all the `_attributes_set` that are actually metadata. field_info.metadata = [*new_field_info.metadata, *field_info.metadata] source_type, annotations = field_info.annotation, field_info.metadata def set_discriminator(schema: CoreSchema) -> CoreSchema: schema = self._apply_discriminator_to_union(schema, field_info.discriminator) return schema with self.field_name_stack.push(name): if field_info.discriminator is not None: schema = self._apply_annotations(source_type, annotations, transform_inner_schema=set_discriminator) else: schema = self._apply_annotations( source_type, annotations, ) # This V1 compatibility shim should eventually be removed # push down any `each_item=True` validators # note that this won't work for any Annotated types that get wrapped by a function validator # but that's okay because that didn't exist in V1 this_field_validators = filter_field_decorator_info_by_field(decorators.validators.values(), name) if _validators_require_validate_default(this_field_validators): field_info.validate_default = True each_item_validators = [v for v in this_field_validators if v.info.each_item is True] this_field_validators = [v for v in this_field_validators if v not in each_item_validators] schema = apply_each_item_validators(schema, each_item_validators, name) schema = apply_validators(schema, filter_field_decorator_info_by_field(this_field_validators, name), name) schema = apply_validators( schema, filter_field_decorator_info_by_field(decorators.field_validators.values(), name), name ) # the default validator needs to go outside of any other validators # so that it is the topmost validator for the field validator # which uses it to check if the field has a default value or not if not field_info.is_required(): schema = wrap_default(field_info, schema) schema = self._apply_field_serializers( schema, filter_field_decorator_info_by_field(decorators.field_serializers.values(), name) ) json_schema_updates = { 'title': field_info.title, 'description': field_info.description, 'deprecated': bool(field_info.deprecated) or field_info.deprecated == '' or None, 'examples': to_jsonable_python(field_info.examples), } json_schema_updates = {k: v for k, v in json_schema_updates.items() if v is not None} json_schema_extra = field_info.json_schema_extra metadata = build_metadata_dict( js_annotation_functions=[get_json_schema_update_func(json_schema_updates, json_schema_extra)] ) alias_generator = self._config_wrapper.alias_generator if alias_generator is not None: self._apply_alias_generator_to_field_info(alias_generator, field_info, name) if isinstance(field_info.validation_alias, (AliasChoices, AliasPath)): validation_alias = field_info.validation_alias.convert_to_aliases() else: validation_alias = field_info.validation_alias return _common_field( schema, serialization_exclude=True if field_info.exclude else None, validation_alias=validation_alias, serialization_alias=field_info.serialization_alias, frozen=field_info.frozen, metadata=metadata, ) def _union_schema(self, union_type: Any) -> core_schema.CoreSchema: """Generate schema for a Union.""" args = self._get_args_resolving_forward_refs(union_type, required=True) choices: list[CoreSchema] = [] nullable = False for arg in args: if arg is None or arg is _typing_extra.NoneType: nullable = True else: choices.append(self.generate_schema(arg)) if len(choices) == 1: s = choices[0] else: choices_with_tags: list[CoreSchema | tuple[CoreSchema, str]] = [] for choice in choices: tag = choice.get('metadata', {}).get(_core_utils.TAGGED_UNION_TAG_KEY) if tag is not None: choices_with_tags.append((choice, tag)) else: choices_with_tags.append(choice) s = core_schema.union_schema(choices_with_tags) if nullable: s = core_schema.nullable_schema(s) return s def _type_alias_type_schema( self, obj: Any, # TypeAliasType ) -> CoreSchema: with self.defs.get_schema_or_ref(obj) as (ref, maybe_schema): if maybe_schema is not None: return maybe_schema origin = get_origin(obj) or obj annotation = origin.__value__ typevars_map = get_standard_typevars_map(obj) with self._types_namespace_stack.push(origin): annotation = _typing_extra.eval_type_lenient(annotation, self._types_namespace) annotation = replace_types(annotation, typevars_map) schema = self.generate_schema(annotation) assert schema['type'] != 'definitions' schema['ref'] = ref # type: ignore self.defs.definitions[ref] = schema return core_schema.definition_reference_schema(ref) def _literal_schema(self, literal_type: Any) -> CoreSchema: """Generate schema for a Literal.""" expected = _typing_extra.all_literal_values(literal_type) assert expected, f'literal "expected" cannot be empty, obj={literal_type}' return core_schema.literal_schema(expected) def _typed_dict_schema(self, typed_dict_cls: Any, origin: Any) -> core_schema.CoreSchema: """Generate schema for a TypedDict. It is not possible to track required/optional keys in TypedDict without __required_keys__ since TypedDict.__new__ erases the base classes (it replaces them with just `dict`) and thus we can track usage of total=True/False __required_keys__ was added in Python 3.9 (https://github.com/miss-islington/cpython/blob/1e9939657dd1f8eb9f596f77c1084d2d351172fc/Doc/library/typing.rst?plain=1#L1546-L1548) however it is buggy (https://github.com/python/typing_extensions/blob/ac52ac5f2cb0e00e7988bae1e2a1b8257ac88d6d/src/typing_extensions.py#L657-L666). On 3.11 but < 3.12 TypedDict does not preserve inheritance information. Hence to avoid creating validators that do not do what users expect we only support typing.TypedDict on Python >= 3.12 or typing_extension.TypedDict on all versions """ from ..fields import FieldInfo with self.model_type_stack.push(typed_dict_cls), self.defs.get_schema_or_ref(typed_dict_cls) as ( typed_dict_ref, maybe_schema, ): if maybe_schema is not None: return maybe_schema typevars_map = get_standard_typevars_map(typed_dict_cls) if origin is not None: typed_dict_cls = origin if not _SUPPORTS_TYPEDDICT and type(typed_dict_cls).__module__ == 'typing': raise PydanticUserError( 'Please use `typing_extensions.TypedDict` instead of `typing.TypedDict` on Python < 3.12.', code='typed-dict-version', ) try: config: ConfigDict | None = get_attribute_from_bases(typed_dict_cls, '__pydantic_config__') except AttributeError: config = None with self._config_wrapper_stack.push(config), self._types_namespace_stack.push(typed_dict_cls): core_config = self._config_wrapper.core_config(typed_dict_cls) self = self._current_generate_schema required_keys: frozenset[str] = typed_dict_cls.__required_keys__ fields: dict[str, core_schema.TypedDictField] = {} decorators = DecoratorInfos.build(typed_dict_cls) if self._config_wrapper.use_attribute_docstrings: field_docstrings = extract_docstrings_from_cls(typed_dict_cls, use_inspect=True) else: field_docstrings = None for field_name, annotation in get_type_hints_infer_globalns( typed_dict_cls, localns=self._types_namespace, include_extras=True ).items(): annotation = replace_types(annotation, typevars_map) required = field_name in required_keys if get_origin(annotation) == _typing_extra.Required: required = True annotation = self._get_args_resolving_forward_refs( annotation, required=True, )[0] elif get_origin(annotation) == _typing_extra.NotRequired: required = False annotation = self._get_args_resolving_forward_refs( annotation, required=True, )[0] field_info = FieldInfo.from_annotation(annotation) if ( field_docstrings is not None and field_info.description is None and field_name in field_docstrings ): field_info.description = field_docstrings[field_name] fields[field_name] = self._generate_td_field_schema( field_name, field_info, decorators, required=required ) metadata = build_metadata_dict( js_functions=[partial(modify_model_json_schema, cls=typed_dict_cls)], typed_dict_cls=typed_dict_cls ) td_schema = core_schema.typed_dict_schema( fields, computed_fields=[ self._computed_field_schema(d, decorators.field_serializers) for d in decorators.computed_fields.values() ], ref=typed_dict_ref, metadata=metadata, config=core_config, ) schema = self._apply_model_serializers(td_schema, decorators.model_serializers.values()) schema = apply_model_validators(schema, decorators.model_validators.values(), 'all') self.defs.definitions[typed_dict_ref] = schema return core_schema.definition_reference_schema(typed_dict_ref) def _namedtuple_schema(self, namedtuple_cls: Any, origin: Any) -> core_schema.CoreSchema: """Generate schema for a NamedTuple.""" with self.model_type_stack.push(namedtuple_cls), self.defs.get_schema_or_ref(namedtuple_cls) as ( namedtuple_ref, maybe_schema, ): if maybe_schema is not None: return maybe_schema typevars_map = get_standard_typevars_map(namedtuple_cls) if origin is not None: namedtuple_cls = origin annotations: dict[str, Any] = get_type_hints_infer_globalns( namedtuple_cls, include_extras=True, localns=self._types_namespace ) if not annotations: # annotations is empty, happens if namedtuple_cls defined via collections.namedtuple(...) annotations = {k: Any for k in namedtuple_cls._fields} if typevars_map: annotations = { field_name: replace_types(annotation, typevars_map) for field_name, annotation in annotations.items() } arguments_schema = core_schema.arguments_schema( [ self._generate_parameter_schema( field_name, annotation, default=namedtuple_cls._field_defaults.get(field_name, Parameter.empty) ) for field_name, annotation in annotations.items() ], metadata=build_metadata_dict(js_prefer_positional_arguments=True), ) return core_schema.call_schema(arguments_schema, namedtuple_cls, ref=namedtuple_ref) def _generate_parameter_schema( self, name: str, annotation: type[Any], default: Any = Parameter.empty, mode: Literal['positional_only', 'positional_or_keyword', 'keyword_only'] | None = None, ) -> core_schema.ArgumentsParameter: """Prepare a ArgumentsParameter to represent a field in a namedtuple or function signature.""" from ..fields import FieldInfo if default is Parameter.empty: field = FieldInfo.from_annotation(annotation) else: field = FieldInfo.from_annotated_attribute(annotation, default) assert field.annotation is not None, 'field.annotation should not be None when generating a schema' source_type, annotations = field.annotation, field.metadata with self.field_name_stack.push(name): schema = self._apply_annotations(source_type, annotations) if not field.is_required(): schema = wrap_default(field, schema) parameter_schema = core_schema.arguments_parameter(name, schema) if mode is not None: parameter_schema['mode'] = mode if field.alias is not None: parameter_schema['alias'] = field.alias else: alias_generator = self._config_wrapper.alias_generator if isinstance(alias_generator, AliasGenerator) and alias_generator.alias is not None: parameter_schema['alias'] = alias_generator.alias(name) elif isinstance(alias_generator, Callable): parameter_schema['alias'] = alias_generator(name) return parameter_schema def _tuple_schema(self, tuple_type: Any) -> core_schema.CoreSchema: """Generate schema for a Tuple, e.g. `tuple[int, str]` or `tuple[int, ...]`.""" # TODO: do we really need to resolve type vars here? typevars_map = get_standard_typevars_map(tuple_type) params = self._get_args_resolving_forward_refs(tuple_type) if typevars_map and params: params = tuple(replace_types(param, typevars_map) for param in params) # NOTE: subtle difference: `tuple[()]` gives `params=()`, whereas `typing.Tuple[()]` gives `params=((),)` # This is only true for <3.11, on Python 3.11+ `typing.Tuple[()]` gives `params=()` if not params: if tuple_type in TUPLE_TYPES: return core_schema.tuple_schema([core_schema.any_schema()], variadic_item_index=0) else: # special case for `tuple[()]` which means `tuple[]` - an empty tuple return core_schema.tuple_schema([]) elif params[-1] is Ellipsis: if len(params) == 2: return core_schema.tuple_schema([self.generate_schema(params[0])], variadic_item_index=0) else: # TODO: something like https://github.com/pydantic/pydantic/issues/5952 raise ValueError('Variable tuples can only have one type') elif len(params) == 1 and params[0] == (): # special case for `Tuple[()]` which means `Tuple[]` - an empty tuple # NOTE: This conditional can be removed when we drop support for Python 3.10. return core_schema.tuple_schema([]) else: return core_schema.tuple_schema([self.generate_schema(param) for param in params]) def _type_schema(self) -> core_schema.CoreSchema: return core_schema.custom_error_schema( core_schema.is_instance_schema(type), custom_error_type='is_type', custom_error_message='Input should be a type', ) def _union_is_subclass_schema(self, union_type: Any) -> core_schema.CoreSchema: """Generate schema for `Type[Union[X, ...]]`.""" args = self._get_args_resolving_forward_refs(union_type, required=True) return core_schema.union_schema([self.generate_schema(typing.Type[args]) for args in args]) def _subclass_schema(self, type_: Any) -> core_schema.CoreSchema: """Generate schema for a Type, e.g. `Type[int]`.""" type_param = self._get_first_arg_or_any(type_) if type_param == Any: return self._type_schema() elif isinstance(type_param, typing.TypeVar): if type_param.__bound__: if _typing_extra.origin_is_union(get_origin(type_param.__bound__)): return self._union_is_subclass_schema(type_param.__bound__) return core_schema.is_subclass_schema(type_param.__bound__) elif type_param.__constraints__: return core_schema.union_schema( [self.generate_schema(typing.Type[c]) for c in type_param.__constraints__] ) else: return self._type_schema() elif _typing_extra.origin_is_union(get_origin(type_param)): return self._union_is_subclass_schema(type_param) else: return core_schema.is_subclass_schema(type_param) def _sequence_schema(self, sequence_type: Any) -> core_schema.CoreSchema: """Generate schema for a Sequence, e.g. `Sequence[int]`.""" from ._std_types_schema import serialize_sequence_via_list item_type = self._get_first_arg_or_any(sequence_type) item_type_schema = self.generate_schema(item_type) list_schema = core_schema.list_schema(item_type_schema) python_schema = core_schema.is_instance_schema(typing.Sequence, cls_repr='Sequence') if item_type != Any: from ._validators import sequence_validator python_schema = core_schema.chain_schema( [python_schema, core_schema.no_info_wrap_validator_function(sequence_validator, list_schema)], ) serialization = core_schema.wrap_serializer_function_ser_schema( serialize_sequence_via_list, schema=item_type_schema, info_arg=True ) return core_schema.json_or_python_schema( json_schema=list_schema, python_schema=python_schema, serialization=serialization ) def _iterable_schema(self, type_: Any) -> core_schema.GeneratorSchema: """Generate a schema for an `Iterable`.""" item_type = self._get_first_arg_or_any(type_) return core_schema.generator_schema(self.generate_schema(item_type)) def _pattern_schema(self, pattern_type: Any) -> core_schema.CoreSchema: from . import _validators metadata = build_metadata_dict(js_functions=[lambda _1, _2: {'type': 'string', 'format': 'regex'}]) ser = core_schema.plain_serializer_function_ser_schema( attrgetter('pattern'), when_used='json', return_schema=core_schema.str_schema() ) if pattern_type == typing.Pattern or pattern_type == re.Pattern: # bare type return core_schema.no_info_plain_validator_function( _validators.pattern_either_validator, serialization=ser, metadata=metadata ) param = self._get_args_resolving_forward_refs( pattern_type, required=True, )[0] if param == str: return core_schema.no_info_plain_validator_function( _validators.pattern_str_validator, serialization=ser, metadata=metadata ) elif param == bytes: return core_schema.no_info_plain_validator_function( _validators.pattern_bytes_validator, serialization=ser, metadata=metadata ) else: raise PydanticSchemaGenerationError(f'Unable to generate pydantic-core schema for {pattern_type!r}.') def _hashable_schema(self) -> core_schema.CoreSchema: return core_schema.custom_error_schema( core_schema.is_instance_schema(collections.abc.Hashable), custom_error_type='is_hashable', custom_error_message='Input should be hashable', ) def _dataclass_schema( self, dataclass: type[StandardDataclass], origin: type[StandardDataclass] | None ) -> core_schema.CoreSchema: """Generate schema for a dataclass.""" with self.model_type_stack.push(dataclass), self.defs.get_schema_or_ref(dataclass) as ( dataclass_ref, maybe_schema, ): if maybe_schema is not None: return maybe_schema typevars_map = get_standard_typevars_map(dataclass) if origin is not None: dataclass = origin with ExitStack() as dataclass_bases_stack: # Pushing a namespace prioritises items already in the stack, so iterate though the MRO forwards for dataclass_base in dataclass.__mro__: if dataclasses.is_dataclass(dataclass_base): dataclass_bases_stack.enter_context(self._types_namespace_stack.push(dataclass_base)) # Pushing a config overwrites the previous config, so iterate though the MRO backwards for dataclass_base in reversed(dataclass.__mro__): if dataclasses.is_dataclass(dataclass_base): config = getattr(dataclass_base, '__pydantic_config__', None) dataclass_bases_stack.enter_context(self._config_wrapper_stack.push(config)) core_config = self._config_wrapper.core_config(dataclass) self = self._current_generate_schema from ..dataclasses import is_pydantic_dataclass if is_pydantic_dataclass(dataclass): fields = deepcopy(dataclass.__pydantic_fields__) if typevars_map: for field in fields.values(): field.apply_typevars_map(typevars_map, self._types_namespace) else: fields = collect_dataclass_fields( dataclass, self._types_namespace, typevars_map=typevars_map, ) # disallow combination of init=False on a dataclass field and extra='allow' on a dataclass if self._config_wrapper_stack.tail.extra == 'allow': # disallow combination of init=False on a dataclass field and extra='allow' on a dataclass for field_name, field in fields.items(): if field.init is False: raise PydanticUserError( f'Field {field_name} has `init=False` and dataclass has config setting `extra="allow"`. ' f'This combination is not allowed.', code='dataclass-init-false-extra-allow', ) decorators = dataclass.__dict__.get('__pydantic_decorators__') or DecoratorInfos.build(dataclass) # Move kw_only=False args to the start of the list, as this is how vanilla dataclasses work. # Note that when kw_only is missing or None, it is treated as equivalent to kw_only=True args = sorted( (self._generate_dc_field_schema(k, v, decorators) for k, v in fields.items()), key=lambda a: a.get('kw_only') is not False, ) has_post_init = hasattr(dataclass, '__post_init__') has_slots = hasattr(dataclass, '__slots__') args_schema = core_schema.dataclass_args_schema( dataclass.__name__, args, computed_fields=[ self._computed_field_schema(d, decorators.field_serializers) for d in decorators.computed_fields.values() ], collect_init_only=has_post_init, ) inner_schema = apply_validators(args_schema, decorators.root_validators.values(), None) model_validators = decorators.model_validators.values() inner_schema = apply_model_validators(inner_schema, model_validators, 'inner') dc_schema = core_schema.dataclass_schema( dataclass, inner_schema, post_init=has_post_init, ref=dataclass_ref, fields=[field.name for field in dataclasses.fields(dataclass)], slots=has_slots, config=core_config, ) schema = self._apply_model_serializers(dc_schema, decorators.model_serializers.values()) schema = apply_model_validators(schema, model_validators, 'outer') self.defs.definitions[dataclass_ref] = schema return core_schema.definition_reference_schema(dataclass_ref) # Type checkers seem to assume ExitStack may suppress exceptions and therefore # control flow can exit the `with` block without returning. assert False, 'Unreachable' def _callable_schema(self, function: Callable[..., Any]) -> core_schema.CallSchema: """Generate schema for a Callable. TODO support functional validators once we support them in Config """ sig = signature(function) type_hints = _typing_extra.get_function_type_hints(function) mode_lookup: dict[_ParameterKind, Literal['positional_only', 'positional_or_keyword', 'keyword_only']] = { Parameter.POSITIONAL_ONLY: 'positional_only', Parameter.POSITIONAL_OR_KEYWORD: 'positional_or_keyword', Parameter.KEYWORD_ONLY: 'keyword_only', } arguments_list: list[core_schema.ArgumentsParameter] = [] var_args_schema: core_schema.CoreSchema | None = None var_kwargs_schema: core_schema.CoreSchema | None = None for name, p in sig.parameters.items(): if p.annotation is sig.empty: annotation = Any else: annotation = type_hints[name] parameter_mode = mode_lookup.get(p.kind) if parameter_mode is not None: arg_schema = self._generate_parameter_schema(name, annotation, p.default, parameter_mode) arguments_list.append(arg_schema) elif p.kind == Parameter.VAR_POSITIONAL: var_args_schema = self.generate_schema(annotation) else: assert p.kind == Parameter.VAR_KEYWORD, p.kind var_kwargs_schema = self.generate_schema(annotation) return_schema: core_schema.CoreSchema | None = None config_wrapper = self._config_wrapper if config_wrapper.validate_return: return_hint = type_hints.get('return') if return_hint is not None: return_schema = self.generate_schema(return_hint) return core_schema.call_schema( core_schema.arguments_schema( arguments_list, var_args_schema=var_args_schema, var_kwargs_schema=var_kwargs_schema, populate_by_name=config_wrapper.populate_by_name, ), function, return_schema=return_schema, ) def _unsubstituted_typevar_schema(self, typevar: typing.TypeVar) -> core_schema.CoreSchema: assert isinstance(typevar, typing.TypeVar) bound = typevar.__bound__ constraints = typevar.__constraints__ default = getattr(typevar, '__default__', None) if (bound is not None) + (len(constraints) != 0) + (default is not None) > 1: raise NotImplementedError( 'Pydantic does not support mixing more than one of TypeVar bounds, constraints and defaults' ) if default is not None: return self.generate_schema(default) elif constraints: return self._union_schema(typing.Union[constraints]) # type: ignore elif bound: schema = self.generate_schema(bound) schema['serialization'] = core_schema.wrap_serializer_function_ser_schema( lambda x, h: h(x), schema=core_schema.any_schema() ) return schema else: return core_schema.any_schema() def _computed_field_schema( self, d: Decorator[ComputedFieldInfo], field_serializers: dict[str, Decorator[FieldSerializerDecoratorInfo]], ) -> core_schema.ComputedField: try: return_type = _decorators.get_function_return_type(d.func, d.info.return_type, self._types_namespace) except NameError as e: raise PydanticUndefinedAnnotation.from_name_error(e) from e if return_type is PydanticUndefined: raise PydanticUserError( 'Computed field is missing return type annotation or specifying `return_type`' ' to the `@computed_field` decorator (e.g. `@computed_field(return_type=int|str)`)', code='model-field-missing-annotation', ) return_type = replace_types(return_type, self._typevars_map) # Create a new ComputedFieldInfo so that different type parametrizations of the same # generic model's computed field can have different return types. d.info = dataclasses.replace(d.info, return_type=return_type) return_type_schema = self.generate_schema(return_type) # Apply serializers to computed field if there exist return_type_schema = self._apply_field_serializers( return_type_schema, filter_field_decorator_info_by_field(field_serializers.values(), d.cls_var_name), computed_field=True, ) alias_generator = self._config_wrapper.alias_generator if alias_generator is not None: self._apply_alias_generator_to_computed_field_info( alias_generator=alias_generator, computed_field_info=d.info, computed_field_name=d.cls_var_name ) def set_computed_field_metadata(schema: CoreSchemaOrField, handler: GetJsonSchemaHandler) -> JsonSchemaValue: json_schema = handler(schema) json_schema['readOnly'] = True title = d.info.title if title is not None: json_schema['title'] = title description = d.info.description if description is not None: json_schema['description'] = description if d.info.deprecated or d.info.deprecated == '': json_schema['deprecated'] = True examples = d.info.examples if examples is not None: json_schema['examples'] = to_jsonable_python(examples) json_schema_extra = d.info.json_schema_extra if json_schema_extra is not None: add_json_schema_extra(json_schema, json_schema_extra) return json_schema metadata = build_metadata_dict(js_annotation_functions=[set_computed_field_metadata]) return core_schema.computed_field( d.cls_var_name, return_schema=return_type_schema, alias=d.info.alias, metadata=metadata ) def _annotated_schema(self, annotated_type: Any) -> core_schema.CoreSchema: """Generate schema for an Annotated type, e.g. `Annotated[int, Field(...)]` or `Annotated[int, Gt(0)]`.""" from ..fields import FieldInfo source_type, *annotations = self._get_args_resolving_forward_refs( annotated_type, required=True, ) schema = self._apply_annotations(source_type, annotations) # put the default validator last so that TypeAdapter.get_default_value() works # even if there are function validators involved for annotation in annotations: if isinstance(annotation, FieldInfo): schema = wrap_default(annotation, schema) return schema def _get_prepare_pydantic_annotations_for_known_type( self, obj: Any, annotations: tuple[Any, ...] ) -> tuple[Any, list[Any]] | None: from ._std_types_schema import PREPARE_METHODS # Check for hashability try: hash(obj) except TypeError: # obj is definitely not a known type if this fails return None for gen in PREPARE_METHODS: res = gen(obj, annotations, self._config_wrapper.config_dict) if res is not None: return res return None def _apply_annotations( self, source_type: Any, annotations: list[Any], transform_inner_schema: Callable[[CoreSchema], CoreSchema] = lambda x: x, ) -> CoreSchema: """Apply arguments from `Annotated` or from `FieldInfo` to a schema. This gets called by `GenerateSchema._annotated_schema` but differs from it in that it does not expect `source_type` to be an `Annotated` object, it expects it to be the first argument of that (in other words, `GenerateSchema._annotated_schema` just unpacks `Annotated`, this process it). """ annotations = list(_known_annotated_metadata.expand_grouped_metadata(annotations)) res = self._get_prepare_pydantic_annotations_for_known_type(source_type, tuple(annotations)) if res is not None: source_type, annotations = res pydantic_js_annotation_functions: list[GetJsonSchemaFunction] = [] def inner_handler(obj: Any) -> CoreSchema: from_property = self._generate_schema_from_property(obj, obj) if from_property is None: schema = self._generate_schema_inner(obj) else: schema = from_property metadata_js_function = _extract_get_pydantic_json_schema(obj, schema) if metadata_js_function is not None: metadata_schema = resolve_original_schema(schema, self.defs.definitions) if metadata_schema is not None: self._add_js_function(metadata_schema, metadata_js_function) return transform_inner_schema(schema) get_inner_schema = CallbackGetCoreSchemaHandler(inner_handler, self) for annotation in annotations: if annotation is None: continue get_inner_schema = self._get_wrapped_inner_schema( get_inner_schema, annotation, pydantic_js_annotation_functions ) schema = get_inner_schema(source_type) if pydantic_js_annotation_functions: metadata = CoreMetadataHandler(schema).metadata metadata.setdefault('pydantic_js_annotation_functions', []).extend(pydantic_js_annotation_functions) return _add_custom_serialization_from_json_encoders(self._config_wrapper.json_encoders, source_type, schema) def _apply_single_annotation(self, schema: core_schema.CoreSchema, metadata: Any) -> core_schema.CoreSchema: from ..fields import FieldInfo if isinstance(metadata, FieldInfo): for field_metadata in metadata.metadata: schema = self._apply_single_annotation(schema, field_metadata) if metadata.discriminator is not None: schema = self._apply_discriminator_to_union(schema, metadata.discriminator) return schema if schema['type'] == 'nullable': # for nullable schemas, metadata is automatically applied to the inner schema inner = schema.get('schema', core_schema.any_schema()) inner = self._apply_single_annotation(inner, metadata) if inner: schema['schema'] = inner return schema original_schema = schema ref = schema.get('ref', None) if ref is not None: schema = schema.copy() new_ref = ref + f'_{repr(metadata)}' if new_ref in self.defs.definitions: return self.defs.definitions[new_ref] schema['ref'] = new_ref # type: ignore elif schema['type'] == 'definition-ref': ref = schema['schema_ref'] if ref in self.defs.definitions: schema = self.defs.definitions[ref].copy() new_ref = ref + f'_{repr(metadata)}' if new_ref in self.defs.definitions: return self.defs.definitions[new_ref] schema['ref'] = new_ref # type: ignore maybe_updated_schema = _known_annotated_metadata.apply_known_metadata(metadata, schema.copy()) if maybe_updated_schema is not None: return maybe_updated_schema return original_schema def _apply_single_annotation_json_schema( self, schema: core_schema.CoreSchema, metadata: Any ) -> core_schema.CoreSchema: from ..fields import FieldInfo if isinstance(metadata, FieldInfo): for field_metadata in metadata.metadata: schema = self._apply_single_annotation_json_schema(schema, field_metadata) json_schema_update: JsonSchemaValue = {} if metadata.title: json_schema_update['title'] = metadata.title if metadata.description: json_schema_update['description'] = metadata.description if metadata.examples: json_schema_update['examples'] = to_jsonable_python(metadata.examples) json_schema_extra = metadata.json_schema_extra if json_schema_update or json_schema_extra: CoreMetadataHandler(schema).metadata.setdefault('pydantic_js_annotation_functions', []).append( get_json_schema_update_func(json_schema_update, json_schema_extra) ) return schema def _get_wrapped_inner_schema( self, get_inner_schema: GetCoreSchemaHandler, annotation: Any, pydantic_js_annotation_functions: list[GetJsonSchemaFunction], ) -> CallbackGetCoreSchemaHandler: metadata_get_schema: GetCoreSchemaFunction = getattr(annotation, '__get_pydantic_core_schema__', None) or ( lambda source, handler: handler(source) ) def new_handler(source: Any) -> core_schema.CoreSchema: schema = metadata_get_schema(source, get_inner_schema) schema = self._apply_single_annotation(schema, annotation) schema = self._apply_single_annotation_json_schema(schema, annotation) metadata_js_function = _extract_get_pydantic_json_schema(annotation, schema) if metadata_js_function is not None: pydantic_js_annotation_functions.append(metadata_js_function) return schema return CallbackGetCoreSchemaHandler(new_handler, self) def _apply_field_serializers( self, schema: core_schema.CoreSchema, serializers: list[Decorator[FieldSerializerDecoratorInfo]], computed_field: bool = False, ) -> core_schema.CoreSchema: """Apply field serializers to a schema.""" if serializers: schema = copy(schema) if schema['type'] == 'definitions': inner_schema = schema['schema'] schema['schema'] = self._apply_field_serializers(inner_schema, serializers) return schema else: ref = typing.cast('str|None', schema.get('ref', None)) if ref is not None: schema = core_schema.definition_reference_schema(ref) # use the last serializer to make it easy to override a serializer set on a parent model serializer = serializers[-1] is_field_serializer, info_arg = inspect_field_serializer( serializer.func, serializer.info.mode, computed_field=computed_field ) try: return_type = _decorators.get_function_return_type( serializer.func, serializer.info.return_type, self._types_namespace ) except NameError as e: raise PydanticUndefinedAnnotation.from_name_error(e) from e if return_type is PydanticUndefined: return_schema = None else: return_schema = self.generate_schema(return_type) if serializer.info.mode == 'wrap': schema['serialization'] = core_schema.wrap_serializer_function_ser_schema( serializer.func, is_field_serializer=is_field_serializer, info_arg=info_arg, return_schema=return_schema, when_used=serializer.info.when_used, ) else: assert serializer.info.mode == 'plain' schema['serialization'] = core_schema.plain_serializer_function_ser_schema( serializer.func, is_field_serializer=is_field_serializer, info_arg=info_arg, return_schema=return_schema, when_used=serializer.info.when_used, ) return schema def _apply_model_serializers( self, schema: core_schema.CoreSchema, serializers: Iterable[Decorator[ModelSerializerDecoratorInfo]] ) -> core_schema.CoreSchema: """Apply model serializers to a schema.""" ref: str | None = schema.pop('ref', None) # type: ignore if serializers: serializer = list(serializers)[-1] info_arg = inspect_model_serializer(serializer.func, serializer.info.mode) try: return_type = _decorators.get_function_return_type( serializer.func, serializer.info.return_type, self._types_namespace ) except NameError as e: raise PydanticUndefinedAnnotation.from_name_error(e) from e if return_type is PydanticUndefined: return_schema = None else: return_schema = self.generate_schema(return_type) if serializer.info.mode == 'wrap': ser_schema: core_schema.SerSchema = core_schema.wrap_serializer_function_ser_schema( serializer.func, info_arg=info_arg, return_schema=return_schema, when_used=serializer.info.when_used, ) else: # plain ser_schema = core_schema.plain_serializer_function_ser_schema( serializer.func, info_arg=info_arg, return_schema=return_schema, when_used=serializer.info.when_used, ) schema['serialization'] = ser_schema if ref: schema['ref'] = ref # type: ignore return schema _VALIDATOR_F_MATCH: Mapping[ tuple[FieldValidatorModes, Literal['no-info', 'with-info']], Callable[[Callable[..., Any], core_schema.CoreSchema, str | None], core_schema.CoreSchema], ] = { ('before', 'no-info'): lambda f, schema, _: core_schema.no_info_before_validator_function(f, schema), ('after', 'no-info'): lambda f, schema, _: core_schema.no_info_after_validator_function(f, schema), ('plain', 'no-info'): lambda f, _1, _2: core_schema.no_info_plain_validator_function(f), ('wrap', 'no-info'): lambda f, schema, _: core_schema.no_info_wrap_validator_function(f, schema), ('before', 'with-info'): lambda f, schema, field_name: core_schema.with_info_before_validator_function( f, schema, field_name=field_name ), ('after', 'with-info'): lambda f, schema, field_name: core_schema.with_info_after_validator_function( f, schema, field_name=field_name ), ('plain', 'with-info'): lambda f, _, field_name: core_schema.with_info_plain_validator_function( f, field_name=field_name ), ('wrap', 'with-info'): lambda f, schema, field_name: core_schema.with_info_wrap_validator_function( f, schema, field_name=field_name ), } def apply_validators( schema: core_schema.CoreSchema, validators: Iterable[Decorator[RootValidatorDecoratorInfo]] | Iterable[Decorator[ValidatorDecoratorInfo]] | Iterable[Decorator[FieldValidatorDecoratorInfo]], field_name: str | None, ) -> core_schema.CoreSchema: """Apply validators to a schema. Args: schema: The schema to apply validators on. validators: An iterable of validators. field_name: The name of the field if validators are being applied to a model field. Returns: The updated schema. """ for validator in validators: info_arg = inspect_validator(validator.func, validator.info.mode) val_type = 'with-info' if info_arg else 'no-info' schema = _VALIDATOR_F_MATCH[(validator.info.mode, val_type)](validator.func, schema, field_name) return schema def _validators_require_validate_default(validators: Iterable[Decorator[ValidatorDecoratorInfo]]) -> bool: """In v1, if any of the validators for a field had `always=True`, the default value would be validated. This serves as an auxiliary function for re-implementing that logic, by looping over a provided collection of (v1-style) ValidatorDecoratorInfo's and checking if any of them have `always=True`. We should be able to drop this function and the associated logic calling it once we drop support for v1-style validator decorators. (Or we can extend it and keep it if we add something equivalent to the v1-validator `always` kwarg to `field_validator`.) """ for validator in validators: if validator.info.always: return True return False def apply_model_validators( schema: core_schema.CoreSchema, validators: Iterable[Decorator[ModelValidatorDecoratorInfo]], mode: Literal['inner', 'outer', 'all'], ) -> core_schema.CoreSchema: """Apply model validators to a schema. If mode == 'inner', only "before" validators are applied If mode == 'outer', validators other than "before" are applied If mode == 'all', all validators are applied Args: schema: The schema to apply validators on. validators: An iterable of validators. mode: The validator mode. Returns: The updated schema. """ ref: str | None = schema.pop('ref', None) # type: ignore for validator in validators: if mode == 'inner' and validator.info.mode != 'before': continue if mode == 'outer' and validator.info.mode == 'before': continue info_arg = inspect_validator(validator.func, validator.info.mode) if validator.info.mode == 'wrap': if info_arg: schema = core_schema.with_info_wrap_validator_function(function=validator.func, schema=schema) else: schema = core_schema.no_info_wrap_validator_function(function=validator.func, schema=schema) elif validator.info.mode == 'before': if info_arg: schema = core_schema.with_info_before_validator_function(function=validator.func, schema=schema) else: schema = core_schema.no_info_before_validator_function(function=validator.func, schema=schema) else: assert validator.info.mode == 'after' if info_arg: schema = core_schema.with_info_after_validator_function(function=validator.func, schema=schema) else: schema = core_schema.no_info_after_validator_function(function=validator.func, schema=schema) if ref: schema['ref'] = ref # type: ignore return schema def wrap_default(field_info: FieldInfo, schema: core_schema.CoreSchema) -> core_schema.CoreSchema: """Wrap schema with default schema if default value or `default_factory` are available. Args: field_info: The field info object. schema: The schema to apply default on. Returns: Updated schema by default value or `default_factory`. """ if field_info.default_factory: return core_schema.with_default_schema( schema, default_factory=field_info.default_factory, validate_default=field_info.validate_default ) elif field_info.default is not PydanticUndefined: return core_schema.with_default_schema( schema, default=field_info.default, validate_default=field_info.validate_default ) else: return schema def _extract_get_pydantic_json_schema(tp: Any, schema: CoreSchema) -> GetJsonSchemaFunction | None: """Extract `__get_pydantic_json_schema__` from a type, handling the deprecated `__modify_schema__`.""" js_modify_function = getattr(tp, '__get_pydantic_json_schema__', None) if hasattr(tp, '__modify_schema__'): from pydantic import BaseModel # circular reference has_custom_v2_modify_js_func = ( js_modify_function is not None and BaseModel.__get_pydantic_json_schema__.__func__ # type: ignore not in (js_modify_function, getattr(js_modify_function, '__func__', None)) ) if not has_custom_v2_modify_js_func: cls_name = getattr(tp, '__name__', None) raise PydanticUserError( f'The `__modify_schema__` method is not supported in Pydantic v2. ' f'Use `__get_pydantic_json_schema__` instead{f" in class `{cls_name}`" if cls_name else ""}.', code='custom-json-schema', ) # handle GenericAlias' but ignore Annotated which "lies" about its origin (in this case it would be `int`) if hasattr(tp, '__origin__') and not isinstance(tp, type(Annotated[int, 'placeholder'])): return _extract_get_pydantic_json_schema(tp.__origin__, schema) if js_modify_function is None: return None return js_modify_function def get_json_schema_update_func( json_schema_update: JsonSchemaValue, json_schema_extra: JsonDict | typing.Callable[[JsonDict], None] | None ) -> GetJsonSchemaFunction: def json_schema_update_func( core_schema_or_field: CoreSchemaOrField, handler: GetJsonSchemaHandler ) -> JsonSchemaValue: json_schema = {**handler(core_schema_or_field), **json_schema_update} add_json_schema_extra(json_schema, json_schema_extra) return json_schema return json_schema_update_func def add_json_schema_extra( json_schema: JsonSchemaValue, json_schema_extra: JsonDict | typing.Callable[[JsonDict], None] | None ): if isinstance(json_schema_extra, dict): json_schema.update(to_jsonable_python(json_schema_extra)) elif callable(json_schema_extra): json_schema_extra(json_schema) class _CommonField(TypedDict): schema: core_schema.CoreSchema validation_alias: str | list[str | int] | list[list[str | int]] | None serialization_alias: str | None serialization_exclude: bool | None frozen: bool | None metadata: dict[str, Any] def _common_field( schema: core_schema.CoreSchema, *, validation_alias: str | list[str | int] | list[list[str | int]] | None = None, serialization_alias: str | None = None, serialization_exclude: bool | None = None, frozen: bool | None = None, metadata: Any = None, ) -> _CommonField: return { 'schema': schema, 'validation_alias': validation_alias, 'serialization_alias': serialization_alias, 'serialization_exclude': serialization_exclude, 'frozen': frozen, 'metadata': metadata, } class _Definitions: """Keeps track of references and definitions.""" def __init__(self) -> None: self.seen: set[str] = set() self.definitions: dict[str, core_schema.CoreSchema] = {} @contextmanager def get_schema_or_ref(self, tp: Any) -> Iterator[tuple[str, None] | tuple[str, CoreSchema]]: """Get a definition for `tp` if one exists. If a definition exists, a tuple of `(ref_string, CoreSchema)` is returned. If no definition exists yet, a tuple of `(ref_string, None)` is returned. Note that the returned `CoreSchema` will always be a `DefinitionReferenceSchema`, not the actual definition itself. This should be called for any type that can be identified by reference. This includes any recursive types. At present the following types can be named/recursive: - BaseModel - Dataclasses - TypedDict - TypeAliasType """ ref = get_type_ref(tp) # return the reference if we're either (1) in a cycle or (2) it was already defined if ref in self.seen or ref in self.definitions: yield (ref, core_schema.definition_reference_schema(ref)) else: self.seen.add(ref) try: yield (ref, None) finally: self.seen.discard(ref) def resolve_original_schema(schema: CoreSchema, definitions: dict[str, CoreSchema]) -> CoreSchema | None: if schema['type'] == 'definition-ref': return definitions.get(schema['schema_ref'], None) elif schema['type'] == 'definitions': return schema['schema'] else: return schema class _FieldNameStack: __slots__ = ('_stack',) def __init__(self) -> None: self._stack: list[str] = [] @contextmanager def push(self, field_name: str) -> Iterator[None]: self._stack.append(field_name) yield self._stack.pop() def get(self) -> str | None: if self._stack: return self._stack[-1] else: return None class _ModelTypeStack: __slots__ = ('_stack',) def __init__(self) -> None: self._stack: list[type] = [] @contextmanager def push(self, type_obj: type) -> Iterator[None]: self._stack.append(type_obj) yield self._stack.pop() def get(self) -> type | None: if self._stack: return self._stack[-1] else: return None