# Author: Leland McInnes # # License: BSD 2 clause from warnings import warn import numba import numpy as np from sklearn.utils import check_random_state, check_array from sklearn.preprocessing import normalize from sklearn.base import BaseEstimator, TransformerMixin from scipy.sparse import ( csr_matrix, coo_matrix, isspmatrix_csr, vstack as sparse_vstack, issparse, ) import heapq import pynndescent.sparse as sparse import pynndescent.sparse_nndescent as sparse_nnd import pynndescent.distances as pynnd_dist from pynndescent.utils import ( tau_rand_int, tau_rand, make_heap, deheap_sort, new_build_candidates, ts, simple_heap_push, checked_flagged_heap_push, has_been_visited, mark_visited, apply_graph_updates_high_memory, apply_graph_updates_low_memory, initalize_heap_from_graph_indices, initalize_heap_from_graph_indices_and_distances, sparse_initalize_heap_from_graph_indices, ) from pynndescent.rp_trees import ( make_forest, rptree_leaf_array, convert_tree_format, FlatTree, denumbaify_tree, renumbaify_tree, select_side, select_side_bit, sparse_select_side, score_linked_tree, ) update_type = numba.types.List( numba.types.List((numba.types.int64, numba.types.int64, numba.types.float64)) ) INT32_MIN = np.iinfo(np.int32).min + 1 INT32_MAX = np.iinfo(np.int32).max - 1 FLOAT32_EPS = np.finfo(np.float32).eps EMPTY_GRAPH = make_heap(1, 1) def is_c_contiguous(array_like): flags = getattr(array_like, "flags", None) return flags is not None and flags["C_CONTIGUOUS"] @numba.njit(parallel=True, cache=False) def generate_leaf_updates(leaf_block, dist_thresholds, data, dist): updates = [[(-1, -1, np.inf)] for i in range(leaf_block.shape[0])] for n in numba.prange(leaf_block.shape[0]): for i in range(leaf_block.shape[1]): p = leaf_block[n, i] if p < 0: break for j in range(i + 1, leaf_block.shape[1]): q = leaf_block[n, j] if q < 0: break d = dist(data[p], data[q]) if d < dist_thresholds[p] or d < dist_thresholds[q]: updates[n].append((p, q, d)) return updates @numba.njit(locals={"d": numba.float32, "p": numba.int32, "q": numba.int32}, cache=False) def init_rp_tree(data, dist, current_graph, leaf_array): n_leaves = leaf_array.shape[0] block_size = 65536 n_blocks = n_leaves // block_size for i in range(n_blocks + 1): block_start = i * block_size block_end = min(n_leaves, (i + 1) * block_size) leaf_block = leaf_array[block_start:block_end] dist_thresholds = current_graph[1][:, 0] updates = generate_leaf_updates(leaf_block, dist_thresholds, data, dist) for j in range(len(updates)): for k in range(len(updates[j])): p, q, d = updates[j][k] if p == -1 or q == -1: continue checked_flagged_heap_push( current_graph[1][p], current_graph[0][p], current_graph[2][p], d, q, np.uint8(1), ) checked_flagged_heap_push( current_graph[1][q], current_graph[0][q], current_graph[2][q], d, p, np.uint8(1), ) @numba.njit( fastmath=True, locals={"d": numba.float32, "idx": numba.int32, "i": numba.int32}, cache=False, ) def init_random(n_neighbors, data, heap, dist, rng_state): for i in range(data.shape[0]): if heap[0][i, 0] < 0.0: for j in range(n_neighbors - np.sum(heap[0][i] >= 0.0)): idx = np.abs(tau_rand_int(rng_state)) % data.shape[0] d = dist(data[idx], data[i]) checked_flagged_heap_push( heap[1][i], heap[0][i], heap[2][i], d, idx, np.uint8(1) ) return @numba.njit(cache=True) def init_from_neighbor_graph(heap, indices, distances): for p in range(indices.shape[0]): for k in range(indices.shape[1]): q = indices[p, k] d = distances[p, k] checked_flagged_heap_push(heap[1][p], heap[0][p], heap[2][p], d, q, 0) return @numba.njit(parallel=True, cache=False) def generate_graph_updates( new_candidate_block, old_candidate_block, dist_thresholds, data, dist ): block_size = new_candidate_block.shape[0] updates = [[(-1, -1, np.inf)] for i in range(block_size)] max_candidates = new_candidate_block.shape[1] for i in numba.prange(block_size): for j in range(max_candidates): p = int(new_candidate_block[i, j]) if p < 0: continue for k in range(j, max_candidates): q = int(new_candidate_block[i, k]) if q < 0: continue d = dist(data[p], data[q]) if d <= dist_thresholds[p] or d <= dist_thresholds[q]: updates[i].append((p, q, d)) for k in range(max_candidates): q = int(old_candidate_block[i, k]) if q < 0: continue d = dist(data[p], data[q]) if d <= dist_thresholds[p] or d <= dist_thresholds[q]: updates[i].append((p, q, d)) return updates @numba.njit(cache=False) def process_candidates( data, dist, current_graph, new_candidate_neighbors, old_candidate_neighbors, n_blocks, block_size, n_threads, ): c = 0 n_vertices = new_candidate_neighbors.shape[0] for i in range(n_blocks + 1): block_start = i * block_size block_end = min(n_vertices, (i + 1) * block_size) new_candidate_block = new_candidate_neighbors[block_start:block_end] old_candidate_block = old_candidate_neighbors[block_start:block_end] dist_thresholds = current_graph[1][:, 0] updates = generate_graph_updates( new_candidate_block, old_candidate_block, dist_thresholds, data, dist ) c += apply_graph_updates_low_memory(current_graph, updates, n_threads) return c @numba.njit() def nn_descent_internal_low_memory_parallel( current_graph, data, n_neighbors, rng_state, max_candidates=50, dist=pynnd_dist.euclidean, n_iters=10, delta=0.001, verbose=False, ): n_vertices = data.shape[0] block_size = 16384 n_blocks = n_vertices // block_size n_threads = numba.get_num_threads() for n in range(n_iters): if verbose: print("\t", n + 1, " / ", n_iters) (new_candidate_neighbors, old_candidate_neighbors) = new_build_candidates( current_graph, max_candidates, rng_state, n_threads ) c = process_candidates( data, dist, current_graph, new_candidate_neighbors, old_candidate_neighbors, n_blocks, block_size, n_threads, ) if c <= delta * n_neighbors * data.shape[0]: if verbose: print("\tStopping threshold met -- exiting after", n + 1, "iterations") return @numba.njit() def nn_descent_internal_high_memory_parallel( current_graph, data, n_neighbors, rng_state, max_candidates=50, dist=pynnd_dist.euclidean, n_iters=10, delta=0.001, verbose=False, ): n_vertices = data.shape[0] block_size = 16384 n_blocks = n_vertices // block_size n_threads = numba.get_num_threads() in_graph = [ set(current_graph[0][i].astype(np.int64)) for i in range(current_graph[0].shape[0]) ] for n in range(n_iters): if verbose: print("\t", n + 1, " / ", n_iters) (new_candidate_neighbors, old_candidate_neighbors) = new_build_candidates( current_graph, max_candidates, rng_state, n_threads ) c = 0 for i in range(n_blocks + 1): block_start = i * block_size block_end = min(n_vertices, (i + 1) * block_size) new_candidate_block = new_candidate_neighbors[block_start:block_end] old_candidate_block = old_candidate_neighbors[block_start:block_end] dist_thresholds = current_graph[1][:, 0] updates = generate_graph_updates( new_candidate_block, old_candidate_block, dist_thresholds, data, dist ) c += apply_graph_updates_high_memory(current_graph, updates, in_graph) if c <= delta * n_neighbors * data.shape[0]: if verbose: print("\tStopping threshold met -- exiting after", n + 1, "iterations") return @numba.njit() def nn_descent( data, n_neighbors, rng_state, max_candidates=50, dist=pynnd_dist.euclidean, n_iters=10, delta=0.001, init_graph=EMPTY_GRAPH, rp_tree_init=True, leaf_array=None, low_memory=True, verbose=False, ): if init_graph[0].shape[0] == 1: # EMPTY_GRAPH current_graph = make_heap(data.shape[0], n_neighbors) if rp_tree_init: init_rp_tree(data, dist, current_graph, leaf_array) init_random(n_neighbors, data, current_graph, dist, rng_state) elif ( init_graph[0].shape[0] == data.shape[0] and init_graph[0].shape[1] == n_neighbors ): current_graph = init_graph else: raise ValueError("Invalid initial graph specified!") if low_memory: nn_descent_internal_low_memory_parallel( current_graph, data, n_neighbors, rng_state, max_candidates=max_candidates, dist=dist, n_iters=n_iters, delta=delta, verbose=verbose, ) else: nn_descent_internal_high_memory_parallel( current_graph, data, n_neighbors, rng_state, max_candidates=max_candidates, dist=dist, n_iters=n_iters, delta=delta, verbose=verbose, ) return deheap_sort(current_graph[0], current_graph[1]) @numba.njit(parallel=True) def diversify(indices, distances, data, dist, rng_state, prune_probability=1.0): for i in numba.prange(indices.shape[0]): new_indices = [indices[i, 0]] new_distances = [distances[i, 0]] for j in range(1, indices.shape[1]): if indices[i, j] < 0: break flag = True for k in range(len(new_indices)): c = new_indices[k] d = dist(data[indices[i, j]], data[c]) if new_distances[k] > FLOAT32_EPS and d < distances[i, j]: if tau_rand(rng_state) < prune_probability: flag = False break if flag: new_indices.append(indices[i, j]) new_distances.append(distances[i, j]) for j in range(indices.shape[1]): if j < len(new_indices): indices[i, j] = new_indices[j] distances[i, j] = new_distances[j] else: indices[i, j] = -1 distances[i, j] = np.inf return indices, distances @numba.njit(parallel=True) def diversify_csr( graph_indptr, graph_indices, graph_data, source_data, dist, rng_state, prune_probability=1.0, ): n_nodes = graph_indptr.shape[0] - 1 for i in numba.prange(n_nodes): current_indices = graph_indices[graph_indptr[i] : graph_indptr[i + 1]] current_data = graph_data[graph_indptr[i] : graph_indptr[i + 1]] order = np.argsort(current_data) retained = np.ones(order.shape[0], dtype=np.int8) for idx in range(1, order.shape[0]): j = order[idx] for k in range(idx): l = order[k] if retained[l] == 1: d = dist( source_data[current_indices[j]], source_data[current_indices[k]] ) if current_data[l] > FLOAT32_EPS and d < current_data[j]: if tau_rand(rng_state) < prune_probability: retained[j] = 0 break for idx in range(order.shape[0]): j = order[idx] if retained[j] == 0: graph_data[graph_indptr[i] + j] = 0 return @numba.njit(parallel=True) def degree_prune_internal(indptr, data, max_degree=20): for i in numba.prange(indptr.shape[0] - 1): row_data = data[indptr[i] : indptr[i + 1]] if row_data.shape[0] > max_degree: cut_value = np.sort(row_data)[max_degree] for j in range(indptr[i], indptr[i + 1]): if data[j] > cut_value: data[j] = 0.0 return def degree_prune(graph, max_degree=20): """Prune the k-neighbors graph back so that nodes have a maximum degree of ``max_degree``. Parameters ---------- graph: sparse matrix The adjacency matrix of the graph max_degree: int (optional, default 20) The maximum degree of any node in the pruned graph Returns ------- result: sparse matrix The pruned graph. """ degree_prune_internal(graph.indptr, graph.data, max_degree) graph.eliminate_zeros() return graph def resort_tree_indices(tree, tree_order): """Given a new data indexing, resort the tree indices to match""" new_tree = FlatTree( tree.hyperplanes, tree.offsets, tree.children, tree.indices[tree_order].astype(np.int32, order="C"), tree.leaf_size, ) return new_tree class NNDescent: """NNDescent for fast approximate nearest neighbor queries. NNDescent is very flexible and supports a wide variety of distances, including non-metric distances. NNDescent also scales well against high dimensional graph_data in many cases. This implementation provides a straightfoward interface, with access to some tuning parameters. Parameters ---------- data: array of shape (n_samples, n_features) The training graph_data set to find nearest neighbors in. metric: string or callable (optional, default='euclidean') The metric to use for computing nearest neighbors. If a callable is used it must be a numba njit compiled function. Supported metrics include: * euclidean * manhattan * chebyshev * minkowski * canberra * braycurtis * mahalanobis * wminkowski * seuclidean * cosine * correlation * haversine * hamming * jaccard * dice * russelrao * kulsinski * rogerstanimoto * sokalmichener * sokalsneath * yule * hellinger * wasserstein-1d Metrics that take arguments (such as minkowski, mahalanobis etc.) can have arguments passed via the metric_kwds dictionary. At this time care must be taken and dictionary elements must be ordered appropriately; this will hopefully be fixed in the future. metric_kwds: dict (optional, default {}) Arguments to pass on to the metric, such as the ``p`` value for Minkowski distance. n_neighbors: int (optional, default=30) The number of neighbors to use in k-neighbor graph graph_data structure used for fast approximate nearest neighbor search. Larger values will result in more accurate search results at the cost of computation time. n_trees: int (optional, default=None) This implementation uses random projection forests for initializing the index build process. This parameter controls the number of trees in that forest. A larger number will result in more accurate neighbor computation at the cost of performance. The default of None means a value will be chosen based on the size of the graph_data. leaf_size: int (optional, default=None) The maximum number of points in a leaf for the random projection trees. The default of None means a value will be chosen based on n_neighbors. pruning_degree_multiplier: float (optional, default=1.5) How aggressively to prune the graph. Since the search graph is undirected (and thus includes nearest neighbors and reverse nearest neighbors) vertices can have very high degree -- the graph will be pruned such that no vertex has degree greater than ``pruning_degree_multiplier * n_neighbors``. diversify_prob: float (optional, default=1.0) The search graph get "diversified" by removing potentially unnecessary edges. This controls the volume of edges removed. A value of 0.0 ensures that no edges get removed, and larger values result in significantly more aggressive edge removal. A value of 1.0 will prune all edges that it can. n_search_trees: int (optional, default=1) The number of random projection trees to use in initializing searching or querying. .. deprecated:: 0.5.5 tree_init: bool (optional, default=True) Whether to use random projection trees for initialization. init_graph: np.ndarray (optional, default=None) 2D array of indices of candidate neighbours of the shape (data.shape[0], n_neighbours). If the j-th neighbour of the i-th instances is unknown, use init_graph[i, j] = -1 init_dist: np.ndarray (optional, default=None) 2D array with the same shape as init_graph, such that metric(data[i], data[init_graph[i, j]]) equals init_dist[i, j] random_state: int, RandomState instance or None, optional (default: None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. algorithm: string (optional, default='standard') This implementation provides an alternative algorithm for construction of the k-neighbors graph used as a search index. The alternative algorithm can be fast for large ``n_neighbors`` values. The``'alternative'`` algorithm has been deprecated and is no longer available. low_memory: boolean (optional, default=True) Whether to use a lower memory, but more computationally expensive approach to index construction. max_candidates: int (optional, default=None) Internally each "self-join" keeps a maximum number of candidates ( nearest neighbors and reverse nearest neighbors) to be considered. This value controls this aspect of the algorithm. Larger values will provide more accurate search results later, but potentially at non-negligible computation cost in building the index. Don't tweak this value unless you know what you're doing. max_rptree_depth: int (optional, default=100) Maximum depth of random projection trees. Increasing this may result in a richer, deeper random projection forest, but it may be composed of many degenerate branches. Increase leaf_size in order to keep shallower, wider nondegenerate trees. Such wide trees, however, may yield poor performance of the preparation of the NN descent. n_iters: int (optional, default=None) The maximum number of NN-descent iterations to perform. The NN-descent algorithm can abort early if limited progress is being made, so this only controls the worst case. Don't tweak this value unless you know what you're doing. The default of None means a value will be chosen based on the size of the graph_data. delta: float (optional, default=0.001) Controls the early abort due to limited progress. Larger values will result in earlier aborts, providing less accurate indexes, and less accurate searching. Don't tweak this value unless you know what you're doing. n_jobs: int or None, optional (default=None) The number of parallel jobs to run for neighbors index construction. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. compressed: bool (optional, default=False) Whether to prune out data not needed for searching the index. This will result in a significantly smaller index, particularly useful for saving, but will remove information that might otherwise be useful. parallel_batch_queries: bool (optional, default=False) Whether to use parallelism of batched queries. This can be useful for large batches of queries on multicore machines, but results in performance degradation for single queries, so is poor for streaming use. verbose: bool (optional, default=False) Whether to print status graph_data during the computation. """ def __init__( self, data, metric="euclidean", metric_kwds=None, n_neighbors=30, n_trees=None, leaf_size=None, pruning_degree_multiplier=1.5, diversify_prob=1.0, n_search_trees=1, tree_init=True, init_graph=None, init_dist=None, random_state=None, low_memory=True, max_candidates=None, max_rptree_depth=200, n_iters=None, delta=0.001, n_jobs=None, compressed=False, parallel_batch_queries=False, verbose=False, ): if n_trees is None: n_trees = 5 + int(round((data.shape[0]) ** 0.25)) n_trees = min(32, n_trees) # Only so many trees are useful if n_iters is None: n_iters = max(5, int(round(np.log2(data.shape[0])))) self.n_trees = n_trees self.n_trees_after_update = max(1, int(np.round(self.n_trees / 3))) self.n_neighbors = n_neighbors self.metric = metric self.metric_kwds = metric_kwds self.leaf_size = leaf_size self.prune_degree_multiplier = pruning_degree_multiplier self.diversify_prob = diversify_prob self.n_search_trees = n_search_trees self.max_rptree_depth = max_rptree_depth self.max_candidates = max_candidates self.low_memory = low_memory self.n_iters = n_iters self.delta = delta self.dim = data.shape[1] self.n_jobs = n_jobs self.compressed = compressed self.parallel_batch_queries = parallel_batch_queries self.verbose = verbose if getattr(data, "dtype", None) == np.float32 and ( issparse(data) or is_c_contiguous(data) ): copy_on_normalize = True else: copy_on_normalize = False if metric in ("bit_hamming", "bit_jaccard"): data = check_array(data, dtype=np.uint8, order="C") self._input_dtype = np.uint8 else: data = check_array(data, dtype=np.float32, accept_sparse="csr", order="C") self._input_dtype = np.float32 self._raw_data = data if not tree_init or n_trees == 0 or init_graph is not None: self.tree_init = False else: self.tree_init = True metric_kwds = metric_kwds or {} self._dist_args = tuple(metric_kwds.values()) self.random_state = random_state current_random_state = check_random_state(self.random_state) self._distance_correction = None if callable(metric): _distance_func = metric elif metric in pynnd_dist.named_distances: if metric in pynnd_dist.fast_distance_alternatives: _distance_func = pynnd_dist.fast_distance_alternatives[metric]["dist"] self._distance_correction = pynnd_dist.fast_distance_alternatives[ metric ]["correction"] else: _distance_func = pynnd_dist.named_distances[metric] else: raise ValueError("Metric is neither callable, " + "nor a recognised string") # Create a partial function for distances with arguments if len(self._dist_args) > 0: dist_args = self._dist_args @numba.njit() def _partial_dist_func(x, y): return _distance_func(x, y, *dist_args) self._distance_func = _partial_dist_func else: self._distance_func = _distance_func if metric in ( "cosine", "dot", "correlation", "dice", "jaccard", "hellinger", "hamming", "bit_hamming", "bit_jaccard", ): self._angular_trees = True if metric in ("bit_hamming", "bit_jaccard"): self._bit_trees = True else: self._bit_trees = False else: self._angular_trees = False self._bit_trees = False if metric == "dot": data = normalize(data, norm="l2", copy=copy_on_normalize) self._raw_data = data self.rng_state = current_random_state.randint(INT32_MIN, INT32_MAX, 3).astype( np.int64 ) self.search_rng_state = current_random_state.randint( INT32_MIN, INT32_MAX, 3 ).astype(np.int64) # Warm up the rng state for i in range(10): _ = tau_rand_int(self.search_rng_state) if self.tree_init: if verbose: print(ts(), "Building RP forest with", str(n_trees), "trees") self._rp_forest = make_forest( data, n_neighbors, n_trees, leaf_size, self.rng_state, current_random_state, self.n_jobs, self._angular_trees, self._bit_trees, max_depth=self.max_rptree_depth, ) leaf_array = rptree_leaf_array(self._rp_forest) else: self._rp_forest = None leaf_array = np.array([[-1]]) if self.max_candidates is None: effective_max_candidates = min(60, self.n_neighbors) else: effective_max_candidates = self.max_candidates # Set threading constraints self._original_num_threads = numba.get_num_threads() if self.n_jobs != -1 and self.n_jobs is not None: numba.set_num_threads(self.n_jobs) if isspmatrix_csr(self._raw_data): self._is_sparse = True if not self._raw_data.has_sorted_indices: self._raw_data.sort_indices() if metric in sparse.sparse_named_distances: if metric in sparse.sparse_fast_distance_alternatives: _distance_func = sparse.sparse_fast_distance_alternatives[metric][ "dist" ] self._distance_correction = ( sparse.sparse_fast_distance_alternatives[metric]["correction"] ) else: _distance_func = sparse.sparse_named_distances[metric] elif callable(metric): _distance_func = metric else: raise ValueError( "Metric {} not supported for sparse data".format(metric) ) if metric in sparse.sparse_need_n_features: metric_kwds["n_features"] = self._raw_data.shape[1] self._dist_args = tuple(metric_kwds.values()) # Create a partial function for distances with arguments if len(self._dist_args) > 0: dist_args = self._dist_args @numba.njit() def _partial_dist_func(ind1, data1, ind2, data2): return _distance_func(ind1, data1, ind2, data2, *dist_args) self._distance_func = _partial_dist_func else: self._distance_func = _distance_func if init_graph is None: _init_graph = EMPTY_GRAPH else: if init_graph.shape[0] != self._raw_data.shape[0]: raise ValueError("Init graph size does not match dataset size!") _init_graph = make_heap(init_graph.shape[0], self.n_neighbors) _init_graph = sparse_initalize_heap_from_graph_indices( _init_graph, init_graph, self._raw_data.indptr, self._raw_data.indices, self._raw_data.data, self._distance_func, ) if verbose: print(ts(), "metric NN descent for", str(n_iters), "iterations") self._neighbor_graph = sparse_nnd.nn_descent( self._raw_data.indices, self._raw_data.indptr, self._raw_data.data, self.n_neighbors, self.rng_state, max_candidates=effective_max_candidates, dist=self._distance_func, n_iters=self.n_iters, delta=self.delta, rp_tree_init=True, leaf_array=leaf_array, init_graph=_init_graph, low_memory=self.low_memory, verbose=verbose, ) else: self._is_sparse = False if init_graph is None: _init_graph = EMPTY_GRAPH else: if init_graph.shape[0] != self._raw_data.shape[0]: raise ValueError("Init graph size does not match dataset size!") _init_graph = make_heap(init_graph.shape[0], self.n_neighbors) if init_dist is None: _init_graph = initalize_heap_from_graph_indices( _init_graph, init_graph, data, self._distance_func ) elif init_graph.shape != init_dist.shape: raise ValueError( "The shapes of init graph and init distances do not match!" ) else: _init_graph = initalize_heap_from_graph_indices_and_distances( _init_graph, init_graph, init_dist ) if verbose: print(ts(), "NN descent for", str(n_iters), "iterations") self._neighbor_graph = nn_descent( self._raw_data, self.n_neighbors, self.rng_state, effective_max_candidates, self._distance_func, self.n_iters, self.delta, low_memory=self.low_memory, rp_tree_init=True, init_graph=_init_graph, leaf_array=leaf_array, verbose=verbose, ) if np.any(self._neighbor_graph[0] < 0): warn( "Failed to correctly find n_neighbors for some samples." " Results may be less than ideal. Try re-running with" " different parameters." ) numba.set_num_threads(self._original_num_threads) def __getstate__(self): if not hasattr(self, "_search_graph"): self._init_search_graph() if not hasattr(self, "_search_function"): if self._is_sparse: self._init_sparse_search_function() else: self._init_search_function() result = self.__dict__.copy() if hasattr(self, "_rp_forest"): del result["_rp_forest"] result["_search_forest"] = tuple( [denumbaify_tree(tree) for tree in self._search_forest] ) return result def __setstate__(self, d): self.__dict__ = d self._search_forest = tuple( [renumbaify_tree(tree) for tree in d["_search_forest"]] ) if self._is_sparse: self._init_sparse_search_function() else: self._init_search_function() def _init_search_graph(self): # Set threading constraints self._original_num_threads = numba.get_num_threads() if self.n_jobs != -1 and self.n_jobs is not None: numba.set_num_threads(self.n_jobs) if not hasattr(self, "_search_forest"): if self._rp_forest is None: if self.tree_init: # We don't have a forest, so make a small search forest current_random_state = check_random_state(self.random_state) rp_forest = make_forest( self._raw_data, self.n_neighbors, self.n_search_trees, self.leaf_size, self.rng_state, current_random_state, self.n_jobs, self._angular_trees, max_depth=self.max_rptree_depth, ) self._search_forest = [ convert_tree_format( tree, self._raw_data.shape[0], self._raw_data.shape[1] ) for tree in rp_forest ] else: self._search_forest = [] else: # convert the best trees into a search forest tree_scores = [ score_linked_tree(tree, self._neighbor_graph[0]) for tree in self._rp_forest ] if self.verbose: print(ts(), "Worst tree score: {:.8f}".format(np.min(tree_scores))) print(ts(), "Mean tree score: {:.8f}".format(np.mean(tree_scores))) print(ts(), "Best tree score: {:.8f}".format(np.max(tree_scores))) best_tree_indices = np.argsort(tree_scores)[: self.n_search_trees] best_trees = [self._rp_forest[idx] for idx in best_tree_indices] del self._rp_forest self._search_forest = [ convert_tree_format( tree, self._raw_data.shape[0], self._raw_data.shape[1] ) for tree in best_trees ] nnz_pre_diversify = np.sum(self._neighbor_graph[0] >= 0) if self._is_sparse: if self.compressed: diversified_rows, diversified_data = sparse.diversify( self._neighbor_graph[0], self._neighbor_graph[1], self._raw_data.indices, self._raw_data.indptr, self._raw_data.data, self._distance_func, self.rng_state, self.diversify_prob, ) else: diversified_rows, diversified_data = sparse.diversify( self._neighbor_graph[0].copy(), self._neighbor_graph[1].copy(), self._raw_data.indices, self._raw_data.indptr, self._raw_data.data, self._distance_func, self.rng_state, self.diversify_prob, ) else: if self.compressed: diversified_rows, diversified_data = diversify( self._neighbor_graph[0], self._neighbor_graph[1], self._raw_data, self._distance_func, self.rng_state, self.diversify_prob, ) else: diversified_rows, diversified_data = diversify( self._neighbor_graph[0].copy(), self._neighbor_graph[1].copy(), self._raw_data, self._distance_func, self.rng_state, self.diversify_prob, ) self._search_graph = coo_matrix( (self._raw_data.shape[0], self._raw_data.shape[0]), dtype=np.float32 ) # Preserve any distance 0 points diversified_data[diversified_data == 0.0] = FLOAT32_EPS self._search_graph.row = np.repeat( np.arange(diversified_rows.shape[0], dtype=np.int32), diversified_rows.shape[1], ) self._search_graph.col = diversified_rows.ravel() self._search_graph.data = diversified_data.ravel() # Get rid of any -1 index entries self._search_graph = self._search_graph.tocsr() self._search_graph.data[self._search_graph.indices == -1] = 0.0 self._search_graph.eliminate_zeros() if self.verbose: print( ts(), "Forward diversification reduced edges from {} to {}".format( nnz_pre_diversify, self._search_graph.nnz ), ) # Reverse graph pre_reverse_diversify_nnz = self._search_graph.nnz reverse_graph = self._search_graph.transpose() if self._is_sparse: sparse.diversify_csr( reverse_graph.indptr, reverse_graph.indices, reverse_graph.data, self._raw_data.indptr, self._raw_data.indices, self._raw_data.data, self._distance_func, self.rng_state, self.diversify_prob, ) else: diversify_csr( reverse_graph.indptr, reverse_graph.indices, reverse_graph.data, self._raw_data, self._distance_func, self.rng_state, self.diversify_prob, ) reverse_graph.eliminate_zeros() if self.verbose: print( ts(), "Reverse diversification reduced edges from {} to {}".format( pre_reverse_diversify_nnz, reverse_graph.nnz ), ) reverse_graph = reverse_graph.tocsr() reverse_graph.sort_indices() self._search_graph = self._search_graph.tocsr() self._search_graph.sort_indices() self._search_graph = self._search_graph.maximum(reverse_graph).tocsr() # Eliminate the diagonal self._search_graph.setdiag(0.0) self._search_graph.eliminate_zeros() pre_prune_nnz = self._search_graph.nnz self._search_graph = degree_prune( self._search_graph, int(np.round(self.prune_degree_multiplier * self.n_neighbors)), ) self._search_graph.eliminate_zeros() self._search_graph = (self._search_graph != 0).astype(np.uint8) if self.verbose: print( ts(), "Degree pruning reduced edges from {} to {}".format( pre_prune_nnz, self._search_graph.nnz ), ) self._visited = np.zeros( (self._raw_data.shape[0] // 8) + 1, dtype=np.uint8, order="C" ) # reorder according to the search tree leaf order if self.verbose: print(ts(), "Resorting data and graph based on tree order") if self.tree_init: self._vertex_order = self._search_forest[0].indices row_ordered_graph = self._search_graph[self._vertex_order, :].tocsc() self._search_graph = row_ordered_graph[:, self._vertex_order] self._search_graph = self._search_graph.tocsr() self._search_graph.sort_indices() if self._is_sparse: self._raw_data = self._raw_data[self._vertex_order, :] else: self._raw_data = np.ascontiguousarray( self._raw_data[self._vertex_order, :] ) tree_order = np.argsort(self._vertex_order) self._search_forest = tuple( resort_tree_indices(tree, tree_order) for tree in self._search_forest[: self.n_search_trees] ) else: self._vertex_order = np.arange(self._raw_data.shape[0]) if self.compressed: if self.verbose: print(ts(), "Compressing index by removing unneeded attributes") if hasattr(self, "_rp_forest"): del self._rp_forest del self._neighbor_graph numba.set_num_threads(self._original_num_threads) def _init_search_function(self): if self.verbose: print(ts(), "Building and compiling search function") if self.tree_init: tree_hyperplanes = self._search_forest[0].hyperplanes tree_offsets = self._search_forest[0].offsets tree_indices = self._search_forest[0].indices tree_children = self._search_forest[0].children if self._bit_trees: @numba.njit( [ numba.types.Array(numba.types.int32, 1, "C", readonly=True)( numba.types.Array(numba.types.uint8, 1, "C", readonly=True), numba.types.Array(numba.types.int64, 1, "C", readonly=False), ) ], locals={"node": numba.types.uint32, "side": numba.types.boolean}, ) def tree_search_closure(point, rng_state): node = 0 while tree_children[node, 0] > 0: side = select_side_bit( tree_hyperplanes[node], tree_offsets[node], point, rng_state ) if side == 0: node = tree_children[node, 0] else: node = tree_children[node, 1] return -tree_children[node] else: @numba.njit( [ numba.types.Array(numba.types.int32, 1, "C", readonly=True)( numba.types.Array(numba.types.float32, 1, "C", readonly=True), numba.types.Array(numba.types.int64, 1, "C", readonly=False), ) ], locals={"node": numba.types.uint32, "side": numba.types.boolean}, ) def tree_search_closure(point, rng_state): node = 0 while tree_children[node, 0] > 0: side = select_side( tree_hyperplanes[node], tree_offsets[node], point, rng_state ) if side == 0: node = tree_children[node, 0] else: node = tree_children[node, 1] return -tree_children[node] self._tree_search = tree_search_closure else: @numba.njit() def tree_search_closure(point, rng_state): return (0, 0) self._tree_search = tree_search_closure tree_indices = np.zeros(1, dtype=np.int64) alternative_dot = pynnd_dist.alternative_dot alternative_cosine = pynnd_dist.alternative_cosine data = self._raw_data indptr = self._search_graph.indptr indices = self._search_graph.indices dist = self._distance_func n_neighbors = self.n_neighbors parallel_search = self.parallel_batch_queries if dist == pynnd_dist.bit_hamming or dist == pynnd_dist.bit_jaccard: data_type = numba.types.uint8[::1] else: data_type = numba.types.float32[::1] @numba.njit( fastmath=True, locals={ "current_query": data_type, "i": numba.types.uint32, "j": numba.types.uint32, "heap_priorities": numba.types.float32[::1], "heap_indices": numba.types.int32[::1], "candidate": numba.types.int32, "vertex": numba.types.int32, "d": numba.types.float32, "d_vertex": numba.types.float32, "visited": numba.types.uint8[::1], "indices": numba.types.int32[::1], "indptr": numba.types.int32[::1], "data": data_type, "heap_size": numba.types.int16, "distance_scale": numba.types.float32, "distance_bound": numba.types.float32, "seed_scale": numba.types.float32, }, parallel=self.parallel_batch_queries, ) def search_closure(query_points, k, epsilon, visited, rng_state): result = make_heap(query_points.shape[0], k) distance_scale = 1.0 + epsilon internal_rng_state = np.copy(rng_state) for i in numba.prange(query_points.shape[0]): # Avoid races on visited if parallel if parallel_search: visited_nodes = np.zeros_like(visited) else: visited_nodes = visited visited_nodes[:] = 0 if dist == alternative_dot or dist == alternative_cosine: norm = np.sqrt((query_points[i] ** 2).sum()) if norm > 0.0: current_query = query_points[i] / norm else: continue else: current_query = query_points[i] heap_priorities = result[1][i] heap_indices = result[0][i] seed_set = [(np.float32(np.inf), np.int32(-1)) for j in range(0)] # heapq.heapify(seed_set) ############ Init ################ index_bounds = tree_search_closure(current_query, internal_rng_state) candidate_indices = tree_indices[index_bounds[0] : index_bounds[1]] n_initial_points = candidate_indices.shape[0] n_random_samples = min(k, n_neighbors) - n_initial_points for j in range(n_initial_points): candidate = candidate_indices[j] d = np.float32(dist(data[candidate], current_query)) # indices are guaranteed different simple_heap_push(heap_priorities, heap_indices, d, candidate) heapq.heappush(seed_set, (d, candidate)) mark_visited(visited_nodes, candidate) if n_random_samples > 0: for j in range(n_random_samples): candidate = np.int32( np.abs(tau_rand_int(internal_rng_state)) % data.shape[0] ) if has_been_visited(visited_nodes, candidate) == 0: d = np.float32(dist(data[candidate], current_query)) simple_heap_push( heap_priorities, heap_indices, d, candidate ) heapq.heappush(seed_set, (d, candidate)) mark_visited(visited_nodes, candidate) ############ Search ############## distance_bound = distance_scale * heap_priorities[0] # Find smallest seed point d_vertex, vertex = heapq.heappop(seed_set) while d_vertex < distance_bound: for j in range(indptr[vertex], indptr[vertex + 1]): candidate = indices[j] if has_been_visited(visited_nodes, candidate) == 0: mark_visited(visited_nodes, candidate) d = np.float32(dist(data[candidate], current_query)) if d < distance_bound: simple_heap_push( heap_priorities, heap_indices, d, candidate ) heapq.heappush(seed_set, (d, candidate)) # Update bound distance_bound = distance_scale * heap_priorities[0] # find new smallest seed point if len(seed_set) == 0: break else: d_vertex, vertex = heapq.heappop(seed_set) return result self._search_function = search_closure if hasattr(deheap_sort, "py_func"): self._deheap_function = numba.njit(parallel=self.parallel_batch_queries)( deheap_sort.py_func ) else: self._deheap_function = deheap_sort # Force compilation of the search function (hardcoded k, epsilon) query_data = self._raw_data[:1] inds, dists, _ = self._search_function( query_data, 5, 0.0, self._visited, self.search_rng_state ) _ = self._deheap_function(inds, dists) def _init_sparse_search_function(self): if self.verbose: print(ts(), "Building and compiling sparse search function") if self.tree_init: tree_hyperplanes = self._search_forest[0].hyperplanes tree_offsets = self._search_forest[0].offsets tree_indices = self._search_forest[0].indices tree_children = self._search_forest[0].children @numba.njit( [ numba.types.Array(numba.types.int32, 1, "C", readonly=True)( numba.types.Array(numba.types.int32, 1, "C", readonly=True), numba.types.Array(numba.types.float32, 1, "C", readonly=True), numba.types.Array(numba.types.int64, 1, "C", readonly=False), ) ], locals={"node": numba.types.uint32, "side": numba.types.boolean}, ) def sparse_tree_search_closure(point_inds, point_data, rng_state): node = 0 while tree_children[node, 0] > 0: side = sparse_select_side( tree_hyperplanes[node], tree_offsets[node], point_inds, point_data, rng_state, ) if side == 0: node = tree_children[node, 0] else: node = tree_children[node, 1] return -tree_children[node] self._tree_search = sparse_tree_search_closure else: @numba.njit() def sparse_tree_search_closure(point_inds, point_data, rng_state): return (0, 0) self._tree_search = sparse_tree_search_closure tree_indices = np.zeros(1, dtype=np.int64) from pynndescent.distances import alternative_dot, alternative_cosine data_inds = self._raw_data.indices data_indptr = self._raw_data.indptr data_data = self._raw_data.data indptr = self._search_graph.indptr indices = self._search_graph.indices dist = self._distance_func n_neighbors = self.n_neighbors parallel_search = self.parallel_batch_queries @numba.njit( fastmath=True, locals={ "current_query": numba.types.float32[::1], "i": numba.types.uint32, "heap_priorities": numba.types.float32[::1], "heap_indices": numba.types.int32[::1], "candidate": numba.types.int32, "d": numba.types.float32, "visited": numba.types.uint8[::1], "indices": numba.types.int32[::1], "indptr": numba.types.int32[::1], "data": numba.types.float32[:, ::1], "heap_size": numba.types.int16, "distance_scale": numba.types.float32, "seed_scale": numba.types.float32, }, parallel=self.parallel_batch_queries, ) def search_closure( query_inds, query_indptr, query_data, k, epsilon, visited, rng_state ): n_query_points = query_indptr.shape[0] - 1 n_index_points = data_indptr.shape[0] - 1 result = make_heap(n_query_points, k) distance_scale = 1.0 + epsilon internal_rng_state = np.copy(rng_state) for i in numba.prange(n_query_points): # Avoid races on visited if parallel if parallel_search: visited_nodes = np.zeros_like(visited) else: visited_nodes = visited visited_nodes[:] = 0 current_query_inds = query_inds[query_indptr[i] : query_indptr[i + 1]] current_query_data = query_data[query_indptr[i] : query_indptr[i + 1]] if dist == alternative_dot or dist == alternative_cosine: norm = np.sqrt((current_query_data**2).sum()) if norm > 0.0: current_query_data = current_query_data / norm else: continue heap_priorities = result[1][i] heap_indices = result[0][i] seed_set = [(np.float32(np.inf), np.int32(-1)) for j in range(0)] heapq.heapify(seed_set) ############ Init ################ index_bounds = sparse_tree_search_closure( current_query_inds, current_query_data, internal_rng_state ) candidate_indices = tree_indices[index_bounds[0] : index_bounds[1]] n_initial_points = candidate_indices.shape[0] n_random_samples = min(k, n_neighbors) - n_initial_points for j in range(n_initial_points): candidate = candidate_indices[j] from_inds = data_inds[ data_indptr[candidate] : data_indptr[candidate + 1] ] from_data = data_data[ data_indptr[candidate] : data_indptr[candidate + 1] ] d = np.float32( dist( from_inds, from_data, current_query_inds, current_query_data ) ) # indices are guaranteed different simple_heap_push(heap_priorities, heap_indices, d, candidate) heapq.heappush(seed_set, (d, candidate)) mark_visited(visited_nodes, candidate) if n_random_samples > 0: for j in range(n_random_samples): candidate = np.int32( np.abs(tau_rand_int(internal_rng_state)) % n_index_points ) if has_been_visited(visited_nodes, candidate) == 0: from_inds = data_inds[ data_indptr[candidate] : data_indptr[candidate + 1] ] from_data = data_data[ data_indptr[candidate] : data_indptr[candidate + 1] ] d = np.float32( dist( from_inds, from_data, current_query_inds, current_query_data, ) ) simple_heap_push( heap_priorities, heap_indices, d, candidate ) heapq.heappush(seed_set, (d, candidate)) mark_visited(visited_nodes, candidate) ############ Search ############## distance_bound = distance_scale * heap_priorities[0] # Find smallest seed point d_vertex, vertex = heapq.heappop(seed_set) while d_vertex < distance_bound: for j in range(indptr[vertex], indptr[vertex + 1]): candidate = indices[j] if has_been_visited(visited_nodes, candidate) == 0: mark_visited(visited_nodes, candidate) from_inds = data_inds[ data_indptr[candidate] : data_indptr[candidate + 1] ] from_data = data_data[ data_indptr[candidate] : data_indptr[candidate + 1] ] d = np.float32( dist( from_inds, from_data, current_query_inds, current_query_data, ) ) if d < distance_bound: simple_heap_push( heap_priorities, heap_indices, d, candidate ) heapq.heappush(seed_set, (d, candidate)) # Update bound distance_bound = distance_scale * heap_priorities[0] # find new smallest seed point if len(seed_set) == 0: break else: d_vertex, vertex = heapq.heappop(seed_set) return result self._search_function = search_closure if hasattr(deheap_sort, "py_func"): self._deheap_function = numba.njit(parallel=self.parallel_batch_queries)( deheap_sort.py_func ) else: self._deheap_function = deheap_sort # Force compilation of the search function (hardcoded k, epsilon) query_data = self._raw_data[:1] inds, dists, _ = self._search_function( query_data.indices, query_data.indptr, query_data.data, 5, 0.0, self._visited, self.search_rng_state, ) _ = self._deheap_function(inds, dists) @property def neighbor_graph(self): if self.compressed and not hasattr(self, "_neighbor_graph"): warn("Compressed indexes do not have neighbor graph information.") return None if self._distance_correction is not None: result = ( self._neighbor_graph[0].copy(), self._distance_correction(self._neighbor_graph[1]), ) else: result = (self._neighbor_graph[0].copy(), self._neighbor_graph[1].copy()) return result def compress_index(self): import gc self.prepare() self.compressed = True if hasattr(self, "_rp_forest"): del self._rp_forest if hasattr(self, "_neighbor_graph"): del self._neighbor_graph gc.collect() return def prepare(self): if not hasattr(self, "_search_graph"): self._init_search_graph() if not hasattr(self, "_search_function"): if self._is_sparse: self._init_sparse_search_function() else: self._init_search_function() return def query(self, query_data, k=10, epsilon=0.1): """Query the training graph_data for the k nearest neighbors Parameters ---------- query_data: array-like, last dimension self.dim An array of points to query k: integer (default = 10) The number of nearest neighbors to return epsilon: float (optional, default=0.1) When searching for nearest neighbors of a query point this values controls the trade-off between accuracy and search cost. Larger values produce more accurate nearest neighbor results at larger computational cost for the search. Values should be in the range 0.0 to 0.5, but should probably not exceed 0.3 without good reason. Returns ------- indices, distances: array (n_query_points, k), array (n_query_points, k) The first array, ``indices``, provides the indices of the graph_data points in the training set that are the nearest neighbors of each query point. Thus ``indices[i, j]`` is the index into the training graph_data of the jth nearest neighbor of the ith query points. Similarly ``distances`` provides the distances to the neighbors of the query points such that ``distances[i, j]`` is the distance from the ith query point to its jth nearest neighbor in the training graph_data. """ if not hasattr(self, "_search_graph"): self._init_search_graph() if not self._is_sparse: # Standard case if not hasattr(self, "_search_function"): self._init_search_function() if self.metric in ("bit_hamming", "bit_jaccard"): query_data = np.asarray(query_data).astype(np.uint8, order="C") else: query_data = np.asarray(query_data).astype(np.float32, order="C") indices, dists, _ = self._search_function( query_data, k, epsilon, self._visited, self.search_rng_state ) else: # Sparse case if not hasattr(self, "_search_function"): self._init_sparse_search_function() query_data = check_array(query_data, accept_sparse="csr", dtype=np.float32) if not isspmatrix_csr(query_data): query_data = csr_matrix(query_data, dtype=np.float32) if not query_data.has_sorted_indices: query_data.sort_indices() indices, dists, _ = self._search_function( query_data.indices, query_data.indptr, query_data.data, k, epsilon, self._visited, self.search_rng_state, ) indices, dists = self._deheap_function(indices, dists) # Sort to input graph_data order indices = self._vertex_order[indices] if self._distance_correction is not None: dists = self._distance_correction(dists) return indices, dists def update(self, xs_fresh=None, xs_updated=None, updated_indices=None): """ Updates the index with a) fresh data (that is appended to the existing data), and b) data that was only updated (but should not be appended to the existing data). Not applicable to sparse data yet. Parameters ---------- xs_fresh: np.ndarray (optional, default=None) 2D array of the shape (n_fresh, dim) where dim is the dimension of the data from which we built self. xs_updated: np.ndarray (optional, default=None) 2D array of the shape (n_updates, dim) where dim is the dimension of the data from which we built self. updated_indices: array-like of size n_updates (optional, default=None) Something that is convertable to list of ints. If self is currently built from xs, then xs[update_indices[i]] will be replaced by xs_updated[i]. Returns ------- None """ current_random_state = check_random_state(self.random_state) rng_state = current_random_state.randint(INT32_MIN, INT32_MAX, 3).astype( np.int64 ) error_sparse_to_do = NotImplementedError("Sparse update not complete yet") # input checks if xs_updated is not None: xs_updated = check_array( xs_updated, dtype=self._input_dtype, accept_sparse="csr", order="C" ) if updated_indices is None: raise ValueError( "If xs_updated are provided, updated_indices must also be provided!" ) if self._is_sparse: raise error_sparse_to_do else: try: updated_indices = list(map(int, updated_indices)) except (TypeError, ValueError): raise ValueError( "Could not convert updated indices to list of int(s)." ) n1 = len(updated_indices) n2 = xs_updated.shape[0] if n1 != n2: raise ValueError( f"Number of updated indices ({n1}) must match " f"number of rows of xs_updated ({n2})." ) else: if updated_indices is not None: warn( "xs_updated not provided, while update_indices provided. " "They will be ignored." ) updated_indices = None if updated_indices is None: # make an empty iterable instead xs_updated = [] updated_indices = [] if xs_fresh is None: if self._is_sparse: xs_fresh = csr_matrix( ([], [], []), shape=(0, self._raw_data.shape[1]), dtype=self._input_dtype ) else: xs_fresh = np.zeros((0, self._raw_data.shape[1]), dtype=self._input_dtype) else: xs_fresh = check_array( xs_fresh, dtype=self._input_dtype, accept_sparse="csr", order="C" ) # data preparation if hasattr(self, "_vertex_order"): original_order = np.argsort(self._vertex_order) else: original_order = np.ones(self._raw_data.shape[0], dtype=np.bool_) if self._is_sparse: self._raw_data = sparse_vstack([self._raw_data, xs_fresh]) if updated_indices: # cannot be reached due to the check above, # but will leave this here as a marker raise error_sparse_to_do else: self._raw_data = self._raw_data[original_order, :] for x_updated, i_fresh in zip(xs_updated, updated_indices): self._raw_data[i_fresh] = x_updated self._raw_data = np.ascontiguousarray(np.vstack([self._raw_data, xs_fresh])) ns, ds = self._neighbor_graph n_examples, n_neighbors = ns.shape indices_set = set(updated_indices) # for fast "is element" checks for i in range(n_examples): # maybe update whole row if i in indices_set: ns[i] = -1 ds[i] = np.inf continue # maybe update some columns for j in range(n_neighbors): if ns[i, j] in indices_set: ns[i, j] = -1 ds[i, j] = np.inf # update neighbors if self._is_sparse: raise error_sparse_to_do else: self.n_trees = self.n_trees_after_update self._rp_forest = make_forest( self._raw_data, self.n_neighbors, self.n_trees, self.leaf_size, rng_state, current_random_state, self.n_jobs, self._angular_trees, max_depth=self.max_rptree_depth, ) leaf_array = rptree_leaf_array(self._rp_forest) current_graph = make_heap(self._raw_data.shape[0], self.n_neighbors) init_from_neighbor_graph( current_graph, self._neighbor_graph[0], self._neighbor_graph[1] ) init_rp_tree(self._raw_data, self._distance_func, current_graph, leaf_array) if self.max_candidates is None: effective_max_candidates = min(60, self.n_neighbors) else: effective_max_candidates = self.max_candidates self._neighbor_graph = nn_descent( self._raw_data, self.n_neighbors, self.rng_state, effective_max_candidates, self._distance_func, self.n_iters, self.delta, init_graph=current_graph, low_memory=self.low_memory, rp_tree_init=False, leaf_array=np.array([[-1], [-1]]), verbose=self.verbose, ) # Remove search graph and search function # and rerun prepare if it was run previously if ( hasattr(self, "_search_graph") or hasattr(self, "_search_function") or hasattr(self, "_search_forest") ): if hasattr(self, "_search_graph"): del self._search_graph if hasattr(self, "_search_forest"): del self._search_forest if hasattr(self, "_search_function"): del self._search_function self.prepare() class PyNNDescentTransformer(BaseEstimator, TransformerMixin): """PyNNDescentTransformer for fast approximate nearest neighbor transformer. It uses the NNDescent algorithm, and is thus very flexible and supports a wide variety of distances, including non-metric distances. NNDescent also scales well against high dimensional graph_data in many cases. Transform X into a (weighted) graph of k nearest neighbors The transformed graph_data is a sparse graph as returned by kneighbors_graph. Parameters ---------- n_neighbors: int (optional, default=5) The number of neighbors to use in k-neighbor graph graph_data structure used for fast approximate nearest neighbor search. Larger values will result in more accurate search results at the cost of computation time. metric: string or callable (optional, default='euclidean') The metric to use for computing nearest neighbors. If a callable is used it must be a numba njit compiled function. Supported metrics include: * euclidean * manhattan * chebyshev * minkowski * canberra * braycurtis * mahalanobis * wminkowski * seuclidean * cosine * correlation * haversine * hamming * jaccard * dice * russelrao * kulsinski * rogerstanimoto * sokalmichener * sokalsneath * yule * hellinger * wasserstein-1d Metrics that take arguments (such as minkowski, mahalanobis etc.) can have arguments passed via the metric_kwds dictionary. At this time care must be taken and dictionary elements must be ordered appropriately; this will hopefully be fixed in the future. metric_kwds: dict (optional, default {}) Arguments to pass on to the metric, such as the ``p`` value for Minkowski distance. n_trees: int (optional, default=None) This implementation uses random projection forests for initialization of searches. This parameter controls the number of trees in that forest. A larger number will result in more accurate neighbor computation at the cost of performance. The default of None means a value will be chosen based on the size of the graph_data. leaf_size: int (optional, default=None) The maximum number of points in a leaf for the random projection trees. The default of None means a value will be chosen based on n_neighbors. pruning_degree_multiplier: float (optional, default=1.5) How aggressively to prune the graph. Since the search graph is undirected (and thus includes nearest neighbors and reverse nearest neighbors) vertices can have very high degree -- the graph will be pruned such that no vertex has degree greater than ``pruning_degree_multiplier * n_neighbors``. diversify_prob: float (optional, default=1.0) The search graph get "diversified" by removing potentially unnecessary edges. This controls the volume of edges removed. A value of 0.0 ensures that no edges get removed, and larger values result in significantly more aggressive edge removal. A value of 1.0 will prune all edges that it can. n_search_trees: int (optional, default=1) The number of random projection trees to use in initializing searching or querying. .. deprecated:: 0.5.5 search_epsilon: float (optional, default=0.1) When searching for nearest neighbors of a query point this values controls the trade-off between accuracy and search cost. Larger values produce more accurate nearest neighbor results at larger computational cost for the search. Values should be in the range 0.0 to 0.5, but should probably not exceed 0.3 without good reason. tree_init: bool (optional, default=True) Whether to use random projection trees for initialization. random_state: int, RandomState instance or None, optional (default: None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. n_jobs: int or None (optional, default=None) The maximum number of parallel threads to be run at a time. If none this will default to using all the cores available. Note that there is not perfect parallelism, so at several pints the algorithm will be single threaded. low_memory: boolean (optional, default=False) Whether to use a lower memory, but more computationally expensive approach to index construction. This defaults to false as for most cases it speeds index construction, but if you are having issues with excessive memory use for your dataset consider setting this to True. max_candidates: int (optional, default=20) Internally each "self-join" keeps a maximum number of candidates ( nearest neighbors and reverse nearest neighbors) to be considered. This value controls this aspect of the algorithm. Larger values will provide more accurate search results later, but potentially at non-negligible computation cost in building the index. Don't tweak this value unless you know what you're doing. n_iters: int (optional, default=None) The maximum number of NN-descent iterations to perform. The NN-descent algorithm can abort early if limited progress is being made, so this only controls the worst case. Don't tweak this value unless you know what you're doing. The default of None means a value will be chosen based on the size of the graph_data. early_termination_value: float (optional, default=0.001) Controls the early abort due to limited progress. Larger values will result in earlier aborts, providing less accurate indexes, and less accurate searching. Don't tweak this value unless you know what you're doing. parallel_batch_queries: bool (optional, default=False) Whether to use parallelism of batched queries. This can be useful for large batches of queries on multicore machines, but results in performance degradation for single queries, so is poor for streaming use. verbose: bool (optional, default=False) Whether to print status graph_data during the computation. Examples -------- >>> from sklearn.manifold import Isomap >>> from pynndescent import PyNNDescentTransformer >>> from sklearn.pipeline import make_pipeline >>> estimator = make_pipeline( ... PyNNDescentTransformer(n_neighbors=5), ... Isomap(neighbors_algorithm='precomputed')) """ def __init__( self, n_neighbors=30, metric="euclidean", metric_kwds=None, n_trees=None, leaf_size=None, search_epsilon=0.1, pruning_degree_multiplier=1.5, diversify_prob=1.0, n_search_trees=1, tree_init=True, random_state=None, n_jobs=None, low_memory=True, max_candidates=None, n_iters=None, early_termination_value=0.001, parallel_batch_queries=False, verbose=False, ): self.n_neighbors = n_neighbors self.metric = metric self.metric_kwds = metric_kwds self.n_trees = n_trees self.leaf_size = leaf_size self.search_epsilon = search_epsilon self.pruning_degree_multiplier = pruning_degree_multiplier self.diversify_prob = diversify_prob self.n_search_trees = n_search_trees self.tree_init = tree_init self.random_state = random_state self.low_memory = low_memory self.max_candidates = max_candidates self.n_iters = n_iters self.early_termination_value = early_termination_value self.n_jobs = n_jobs self.parallel_batch_queries = parallel_batch_queries self.verbose = verbose def fit(self, X, compress_index=True): """Fit the PyNNDescent transformer to build KNN graphs with neighbors given by the dataset X. Parameters ---------- X : array-like, shape (n_samples, n_features) Sample graph_data Returns ------- transformer : PyNNDescentTransformer The trained transformer """ self.n_samples_fit = X.shape[0] if self.metric_kwds is None: metric_kwds = {} else: metric_kwds = self.metric_kwds if self.verbose: print(ts(), "Creating index") # Compatibility with sklearn, which doesn't consider # a point its own neighbor for these purposes. effective_n_neighbors = self.n_neighbors + 1 self.index_ = NNDescent( X, metric=self.metric, metric_kwds=metric_kwds, n_neighbors=effective_n_neighbors, n_trees=self.n_trees, leaf_size=self.leaf_size, pruning_degree_multiplier=self.pruning_degree_multiplier, diversify_prob=self.diversify_prob, n_search_trees=self.n_search_trees, tree_init=self.tree_init, random_state=self.random_state, low_memory=self.low_memory, max_candidates=self.max_candidates, n_iters=self.n_iters, delta=self.early_termination_value, n_jobs=self.n_jobs, compressed=compress_index, parallel_batch_queries=self.parallel_batch_queries, verbose=self.verbose, ) return self def transform(self, X, y=None): """Computes the (weighted) graph of Neighbors for points in X Parameters ---------- X : array-like, shape (n_samples_transform, n_features) Sample graph_data Returns ------- Xt : CSR sparse matrix, shape (n_samples_transform, n_samples_fit) Xt[i, j] is assigned the weight of edge that connects i to j. Only the neighbors have an explicit value. """ if X is None: n_samples_transform = self.n_samples_fit else: n_samples_transform = X.shape[0] if X is None: indices, distances = self.index_.neighbor_graph else: indices, distances = self.index_.query( X, k=self.n_neighbors, epsilon=self.search_epsilon ) if self.verbose: print(ts(), "Constructing neighbor matrix") result = coo_matrix((n_samples_transform, self.n_samples_fit), dtype=np.float32) result.row = np.repeat( np.arange(indices.shape[0], dtype=np.int32), indices.shape[1] ) result.col = indices.ravel() result.data = distances.ravel() return result.tocsr() def fit_transform(self, X, y=None, **fit_params): """Fit to graph_data, then transform it. Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X. Parameters ---------- X : numpy array of shape (n_samples, n_features) Training set. y : ignored Returns ------- Xt : CSR sparse matrix, shape (n_samples, n_samples) Xt[i, j] is assigned the weight of edge that connects i to j. Only the neighbors have an explicit value. The diagonal is always explicit. """ self.fit(X, compress_index=False) result = self.transform(X=None) if self.verbose: print(ts(), "Compressing index") self.index_.compress_index() return result