import numpy as np import pytest from sklearn.datasets import load_iris from sklearn.model_selection import ( LearningCurveDisplay, ValidationCurveDisplay, learning_curve, validation_curve, ) from sklearn.tree import DecisionTreeClassifier from sklearn.utils import shuffle from sklearn.utils._testing import assert_allclose, assert_array_equal @pytest.fixture def data(): return shuffle(*load_iris(return_X_y=True), random_state=0) @pytest.mark.parametrize( "params, err_type, err_msg", [ ({"std_display_style": "invalid"}, ValueError, "Unknown std_display_style:"), ({"score_type": "invalid"}, ValueError, "Unknown score_type:"), ], ) @pytest.mark.parametrize( "CurveDisplay, specific_params", [ (ValidationCurveDisplay, {"param_name": "max_depth", "param_range": [1, 3, 5]}), (LearningCurveDisplay, {"train_sizes": [0.3, 0.6, 0.9]}), ], ) def test_curve_display_parameters_validation( pyplot, data, params, err_type, err_msg, CurveDisplay, specific_params ): """Check that we raise a proper error when passing invalid parameters.""" X, y = data estimator = DecisionTreeClassifier(random_state=0) with pytest.raises(err_type, match=err_msg): CurveDisplay.from_estimator(estimator, X, y, **specific_params, **params) def test_learning_curve_display_default_usage(pyplot, data): """Check the default usage of the LearningCurveDisplay class.""" X, y = data estimator = DecisionTreeClassifier(random_state=0) train_sizes = [0.3, 0.6, 0.9] display = LearningCurveDisplay.from_estimator( estimator, X, y, train_sizes=train_sizes ) import matplotlib as mpl assert display.errorbar_ is None assert isinstance(display.lines_, list) for line in display.lines_: assert isinstance(line, mpl.lines.Line2D) assert isinstance(display.fill_between_, list) for fill in display.fill_between_: assert isinstance(fill, mpl.collections.PolyCollection) assert fill.get_alpha() == 0.5 assert display.score_name == "Score" assert display.ax_.get_xlabel() == "Number of samples in the training set" assert display.ax_.get_ylabel() == "Score" _, legend_labels = display.ax_.get_legend_handles_labels() assert legend_labels == ["Train", "Test"] train_sizes_abs, train_scores, test_scores = learning_curve( estimator, X, y, train_sizes=train_sizes ) assert_array_equal(display.train_sizes, train_sizes_abs) assert_allclose(display.train_scores, train_scores) assert_allclose(display.test_scores, test_scores) def test_validation_curve_display_default_usage(pyplot, data): """Check the default usage of the ValidationCurveDisplay class.""" X, y = data estimator = DecisionTreeClassifier(random_state=0) param_name, param_range = "max_depth", [1, 3, 5] display = ValidationCurveDisplay.from_estimator( estimator, X, y, param_name=param_name, param_range=param_range ) import matplotlib as mpl assert display.errorbar_ is None assert isinstance(display.lines_, list) for line in display.lines_: assert isinstance(line, mpl.lines.Line2D) assert isinstance(display.fill_between_, list) for fill in display.fill_between_: assert isinstance(fill, mpl.collections.PolyCollection) assert fill.get_alpha() == 0.5 assert display.score_name == "Score" assert display.ax_.get_xlabel() == f"{param_name}" assert display.ax_.get_ylabel() == "Score" _, legend_labels = display.ax_.get_legend_handles_labels() assert legend_labels == ["Train", "Test"] train_scores, test_scores = validation_curve( estimator, X, y, param_name=param_name, param_range=param_range ) assert_array_equal(display.param_range, param_range) assert_allclose(display.train_scores, train_scores) assert_allclose(display.test_scores, test_scores) @pytest.mark.parametrize( "CurveDisplay, specific_params", [ (ValidationCurveDisplay, {"param_name": "max_depth", "param_range": [1, 3, 5]}), (LearningCurveDisplay, {"train_sizes": [0.3, 0.6, 0.9]}), ], ) def test_curve_display_negate_score(pyplot, data, CurveDisplay, specific_params): """Check the behaviour of the `negate_score` parameter calling `from_estimator` and `plot`. """ X, y = data estimator = DecisionTreeClassifier(max_depth=1, random_state=0) negate_score = False display = CurveDisplay.from_estimator( estimator, X, y, **specific_params, negate_score=negate_score ) positive_scores = display.lines_[0].get_data()[1] assert (positive_scores >= 0).all() assert display.ax_.get_ylabel() == "Score" negate_score = True display = CurveDisplay.from_estimator( estimator, X, y, **specific_params, negate_score=negate_score ) negative_scores = display.lines_[0].get_data()[1] assert (negative_scores <= 0).all() assert_allclose(negative_scores, -positive_scores) assert display.ax_.get_ylabel() == "Negative score" negate_score = False display = CurveDisplay.from_estimator( estimator, X, y, **specific_params, negate_score=negate_score ) assert display.ax_.get_ylabel() == "Score" display.plot(negate_score=not negate_score) assert display.ax_.get_ylabel() == "Score" assert (display.lines_[0].get_data()[1] < 0).all() @pytest.mark.parametrize( "score_name, ylabel", [(None, "Score"), ("Accuracy", "Accuracy")] ) @pytest.mark.parametrize( "CurveDisplay, specific_params", [ (ValidationCurveDisplay, {"param_name": "max_depth", "param_range": [1, 3, 5]}), (LearningCurveDisplay, {"train_sizes": [0.3, 0.6, 0.9]}), ], ) def test_curve_display_score_name( pyplot, data, score_name, ylabel, CurveDisplay, specific_params ): """Check that we can overwrite the default score name shown on the y-axis.""" X, y = data estimator = DecisionTreeClassifier(random_state=0) display = CurveDisplay.from_estimator( estimator, X, y, **specific_params, score_name=score_name ) assert display.ax_.get_ylabel() == ylabel X, y = data estimator = DecisionTreeClassifier(max_depth=1, random_state=0) display = CurveDisplay.from_estimator( estimator, X, y, **specific_params, score_name=score_name ) assert display.score_name == ylabel @pytest.mark.parametrize("std_display_style", (None, "errorbar")) def test_learning_curve_display_score_type(pyplot, data, std_display_style): """Check the behaviour of setting the `score_type` parameter.""" X, y = data estimator = DecisionTreeClassifier(random_state=0) train_sizes = [0.3, 0.6, 0.9] train_sizes_abs, train_scores, test_scores = learning_curve( estimator, X, y, train_sizes=train_sizes ) score_type = "train" display = LearningCurveDisplay.from_estimator( estimator, X, y, train_sizes=train_sizes, score_type=score_type, std_display_style=std_display_style, ) _, legend_label = display.ax_.get_legend_handles_labels() assert legend_label == ["Train"] if std_display_style is None: assert len(display.lines_) == 1 assert display.errorbar_ is None x_data, y_data = display.lines_[0].get_data() else: assert display.lines_ is None assert len(display.errorbar_) == 1 x_data, y_data = display.errorbar_[0].lines[0].get_data() assert_array_equal(x_data, train_sizes_abs) assert_allclose(y_data, train_scores.mean(axis=1)) score_type = "test" display = LearningCurveDisplay.from_estimator( estimator, X, y, train_sizes=train_sizes, score_type=score_type, std_display_style=std_display_style, ) _, legend_label = display.ax_.get_legend_handles_labels() assert legend_label == ["Test"] if std_display_style is None: assert len(display.lines_) == 1 assert display.errorbar_ is None x_data, y_data = display.lines_[0].get_data() else: assert display.lines_ is None assert len(display.errorbar_) == 1 x_data, y_data = display.errorbar_[0].lines[0].get_data() assert_array_equal(x_data, train_sizes_abs) assert_allclose(y_data, test_scores.mean(axis=1)) score_type = "both" display = LearningCurveDisplay.from_estimator( estimator, X, y, train_sizes=train_sizes, score_type=score_type, std_display_style=std_display_style, ) _, legend_label = display.ax_.get_legend_handles_labels() assert legend_label == ["Train", "Test"] if std_display_style is None: assert len(display.lines_) == 2 assert display.errorbar_ is None x_data_train, y_data_train = display.lines_[0].get_data() x_data_test, y_data_test = display.lines_[1].get_data() else: assert display.lines_ is None assert len(display.errorbar_) == 2 x_data_train, y_data_train = display.errorbar_[0].lines[0].get_data() x_data_test, y_data_test = display.errorbar_[1].lines[0].get_data() assert_array_equal(x_data_train, train_sizes_abs) assert_allclose(y_data_train, train_scores.mean(axis=1)) assert_array_equal(x_data_test, train_sizes_abs) assert_allclose(y_data_test, test_scores.mean(axis=1)) @pytest.mark.parametrize("std_display_style", (None, "errorbar")) def test_validation_curve_display_score_type(pyplot, data, std_display_style): """Check the behaviour of setting the `score_type` parameter.""" X, y = data estimator = DecisionTreeClassifier(random_state=0) param_name, param_range = "max_depth", [1, 3, 5] train_scores, test_scores = validation_curve( estimator, X, y, param_name=param_name, param_range=param_range ) score_type = "train" display = ValidationCurveDisplay.from_estimator( estimator, X, y, param_name=param_name, param_range=param_range, score_type=score_type, std_display_style=std_display_style, ) _, legend_label = display.ax_.get_legend_handles_labels() assert legend_label == ["Train"] if std_display_style is None: assert len(display.lines_) == 1 assert display.errorbar_ is None x_data, y_data = display.lines_[0].get_data() else: assert display.lines_ is None assert len(display.errorbar_) == 1 x_data, y_data = display.errorbar_[0].lines[0].get_data() assert_array_equal(x_data, param_range) assert_allclose(y_data, train_scores.mean(axis=1)) score_type = "test" display = ValidationCurveDisplay.from_estimator( estimator, X, y, param_name=param_name, param_range=param_range, score_type=score_type, std_display_style=std_display_style, ) _, legend_label = display.ax_.get_legend_handles_labels() assert legend_label == ["Test"] if std_display_style is None: assert len(display.lines_) == 1 assert display.errorbar_ is None x_data, y_data = display.lines_[0].get_data() else: assert display.lines_ is None assert len(display.errorbar_) == 1 x_data, y_data = display.errorbar_[0].lines[0].get_data() assert_array_equal(x_data, param_range) assert_allclose(y_data, test_scores.mean(axis=1)) score_type = "both" display = ValidationCurveDisplay.from_estimator( estimator, X, y, param_name=param_name, param_range=param_range, score_type=score_type, std_display_style=std_display_style, ) _, legend_label = display.ax_.get_legend_handles_labels() assert legend_label == ["Train", "Test"] if std_display_style is None: assert len(display.lines_) == 2 assert display.errorbar_ is None x_data_train, y_data_train = display.lines_[0].get_data() x_data_test, y_data_test = display.lines_[1].get_data() else: assert display.lines_ is None assert len(display.errorbar_) == 2 x_data_train, y_data_train = display.errorbar_[0].lines[0].get_data() x_data_test, y_data_test = display.errorbar_[1].lines[0].get_data() assert_array_equal(x_data_train, param_range) assert_allclose(y_data_train, train_scores.mean(axis=1)) assert_array_equal(x_data_test, param_range) assert_allclose(y_data_test, test_scores.mean(axis=1)) @pytest.mark.parametrize( "CurveDisplay, specific_params, expected_xscale", [ ( ValidationCurveDisplay, {"param_name": "max_depth", "param_range": np.arange(1, 5)}, "linear", ), (LearningCurveDisplay, {"train_sizes": np.linspace(0.1, 0.9, num=5)}, "linear"), ( ValidationCurveDisplay, { "param_name": "max_depth", "param_range": np.round(np.logspace(0, 2, num=5)).astype(np.int64), }, "log", ), (LearningCurveDisplay, {"train_sizes": np.logspace(-1, 0, num=5)}, "log"), ], ) def test_curve_display_xscale_auto( pyplot, data, CurveDisplay, specific_params, expected_xscale ): """Check the behaviour of the x-axis scaling depending on the data provided.""" X, y = data estimator = DecisionTreeClassifier(random_state=0) display = CurveDisplay.from_estimator(estimator, X, y, **specific_params) assert display.ax_.get_xscale() == expected_xscale @pytest.mark.parametrize( "CurveDisplay, specific_params", [ (ValidationCurveDisplay, {"param_name": "max_depth", "param_range": [1, 3, 5]}), (LearningCurveDisplay, {"train_sizes": [0.3, 0.6, 0.9]}), ], ) def test_curve_display_std_display_style(pyplot, data, CurveDisplay, specific_params): """Check the behaviour of the parameter `std_display_style`.""" X, y = data estimator = DecisionTreeClassifier(random_state=0) import matplotlib as mpl std_display_style = None display = CurveDisplay.from_estimator( estimator, X, y, **specific_params, std_display_style=std_display_style, ) assert len(display.lines_) == 2 for line in display.lines_: assert isinstance(line, mpl.lines.Line2D) assert display.errorbar_ is None assert display.fill_between_ is None _, legend_label = display.ax_.get_legend_handles_labels() assert len(legend_label) == 2 std_display_style = "fill_between" display = CurveDisplay.from_estimator( estimator, X, y, **specific_params, std_display_style=std_display_style, ) assert len(display.lines_) == 2 for line in display.lines_: assert isinstance(line, mpl.lines.Line2D) assert display.errorbar_ is None assert len(display.fill_between_) == 2 for fill_between in display.fill_between_: assert isinstance(fill_between, mpl.collections.PolyCollection) _, legend_label = display.ax_.get_legend_handles_labels() assert len(legend_label) == 2 std_display_style = "errorbar" display = CurveDisplay.from_estimator( estimator, X, y, **specific_params, std_display_style=std_display_style, ) assert display.lines_ is None assert len(display.errorbar_) == 2 for errorbar in display.errorbar_: assert isinstance(errorbar, mpl.container.ErrorbarContainer) assert display.fill_between_ is None _, legend_label = display.ax_.get_legend_handles_labels() assert len(legend_label) == 2 @pytest.mark.parametrize( "CurveDisplay, specific_params", [ (ValidationCurveDisplay, {"param_name": "max_depth", "param_range": [1, 3, 5]}), (LearningCurveDisplay, {"train_sizes": [0.3, 0.6, 0.9]}), ], ) def test_curve_display_plot_kwargs(pyplot, data, CurveDisplay, specific_params): """Check the behaviour of the different plotting keyword arguments: `line_kw`, `fill_between_kw`, and `errorbar_kw`.""" X, y = data estimator = DecisionTreeClassifier(random_state=0) std_display_style = "fill_between" line_kw = {"color": "red"} fill_between_kw = {"color": "red", "alpha": 1.0} display = CurveDisplay.from_estimator( estimator, X, y, **specific_params, std_display_style=std_display_style, line_kw=line_kw, fill_between_kw=fill_between_kw, ) assert display.lines_[0].get_color() == "red" assert_allclose( display.fill_between_[0].get_facecolor(), [[1.0, 0.0, 0.0, 1.0]], # trust me, it's red ) std_display_style = "errorbar" errorbar_kw = {"color": "red"} display = CurveDisplay.from_estimator( estimator, X, y, **specific_params, std_display_style=std_display_style, errorbar_kw=errorbar_kw, ) assert display.errorbar_[0].lines[0].get_color() == "red" # TODO(1.5): to be removed def test_learning_curve_display_deprecate_log_scale(data, pyplot): """Check that we warn for the deprecated parameter `log_scale`.""" X, y = data estimator = DecisionTreeClassifier(random_state=0) with pytest.warns(FutureWarning, match="`log_scale` parameter is deprecated"): display = LearningCurveDisplay.from_estimator( estimator, X, y, train_sizes=[0.3, 0.6, 0.9], log_scale=True ) assert display.ax_.get_xscale() == "log" assert display.ax_.get_yscale() == "linear" with pytest.warns(FutureWarning, match="`log_scale` parameter is deprecated"): display = LearningCurveDisplay.from_estimator( estimator, X, y, train_sizes=[0.3, 0.6, 0.9], log_scale=False ) assert display.ax_.get_xscale() == "linear" assert display.ax_.get_yscale() == "linear" @pytest.mark.parametrize( "param_range, xscale", [([5, 10, 15], "linear"), ([-50, 5, 50, 500], "symlog"), ([5, 50, 500], "log")], ) def test_validation_curve_xscale_from_param_range_provided_as_a_list( pyplot, data, param_range, xscale ): """Check the induced xscale from the provided param_range values.""" X, y = data estimator = DecisionTreeClassifier(random_state=0) param_name = "max_depth" display = ValidationCurveDisplay.from_estimator( estimator, X, y, param_name=param_name, param_range=param_range, ) assert display.ax_.get_xscale() == xscale @pytest.mark.parametrize( "Display, params", [ (LearningCurveDisplay, {}), (ValidationCurveDisplay, {"param_name": "max_depth", "param_range": [1, 3, 5]}), ], ) def test_subclassing_displays(pyplot, data, Display, params): """Check that named constructors return the correct type when subclassed. Non-regression test for: https://github.com/scikit-learn/scikit-learn/pull/27675 """ X, y = data estimator = DecisionTreeClassifier(random_state=0) class SubclassOfDisplay(Display): pass display = SubclassOfDisplay.from_estimator(estimator, X, y, **params) assert isinstance(display, SubclassOfDisplay)