import warnings import numpy as np from ..base import BaseEstimator, TransformerMixin, _fit_context from ..utils._param_validation import StrOptions from ..utils._set_output import ADAPTERS_MANAGER, _get_output_config from ..utils.metaestimators import available_if from ..utils.validation import ( _allclose_dense_sparse, _check_feature_names_in, _get_feature_names, _is_pandas_df, _is_polars_df, check_array, ) def _get_adapter_from_container(container): """Get the adapter that nows how to handle such container. See :class:`sklearn.utils._set_output.ContainerAdapterProtocol` for more details. """ module_name = container.__class__.__module__.split(".")[0] try: return ADAPTERS_MANAGER.adapters[module_name] except KeyError as exc: available_adapters = list(ADAPTERS_MANAGER.adapters.keys()) raise ValueError( "The container does not have a registered adapter in scikit-learn. " f"Available adapters are: {available_adapters} while the container " f"provided is: {container!r}." ) from exc def _identity(X): """The identity function.""" return X class FunctionTransformer(TransformerMixin, BaseEstimator): """Constructs a transformer from an arbitrary callable. A FunctionTransformer forwards its X (and optionally y) arguments to a user-defined function or function object and returns the result of this function. This is useful for stateless transformations such as taking the log of frequencies, doing custom scaling, etc. Note: If a lambda is used as the function, then the resulting transformer will not be pickleable. .. versionadded:: 0.17 Read more in the :ref:`User Guide `. Parameters ---------- func : callable, default=None The callable to use for the transformation. This will be passed the same arguments as transform, with args and kwargs forwarded. If func is None, then func will be the identity function. inverse_func : callable, default=None The callable to use for the inverse transformation. This will be passed the same arguments as inverse transform, with args and kwargs forwarded. If inverse_func is None, then inverse_func will be the identity function. validate : bool, default=False Indicate that the input X array should be checked before calling ``func``. The possibilities are: - If False, there is no input validation. - If True, then X will be converted to a 2-dimensional NumPy array or sparse matrix. If the conversion is not possible an exception is raised. .. versionchanged:: 0.22 The default of ``validate`` changed from True to False. accept_sparse : bool, default=False Indicate that func accepts a sparse matrix as input. If validate is False, this has no effect. Otherwise, if accept_sparse is false, sparse matrix inputs will cause an exception to be raised. check_inverse : bool, default=True Whether to check that or ``func`` followed by ``inverse_func`` leads to the original inputs. It can be used for a sanity check, raising a warning when the condition is not fulfilled. .. versionadded:: 0.20 feature_names_out : callable, 'one-to-one' or None, default=None Determines the list of feature names that will be returned by the `get_feature_names_out` method. If it is 'one-to-one', then the output feature names will be equal to the input feature names. If it is a callable, then it must take two positional arguments: this `FunctionTransformer` (`self`) and an array-like of input feature names (`input_features`). It must return an array-like of output feature names. The `get_feature_names_out` method is only defined if `feature_names_out` is not None. See ``get_feature_names_out`` for more details. .. versionadded:: 1.1 kw_args : dict, default=None Dictionary of additional keyword arguments to pass to func. .. versionadded:: 0.18 inv_kw_args : dict, default=None Dictionary of additional keyword arguments to pass to inverse_func. .. versionadded:: 0.18 Attributes ---------- n_features_in_ : int Number of features seen during :term:`fit`. .. versionadded:: 0.24 feature_names_in_ : ndarray of shape (`n_features_in_`,) Names of features seen during :term:`fit`. Defined only when `X` has feature names that are all strings. .. versionadded:: 1.0 See Also -------- MaxAbsScaler : Scale each feature by its maximum absolute value. StandardScaler : Standardize features by removing the mean and scaling to unit variance. LabelBinarizer : Binarize labels in a one-vs-all fashion. MultiLabelBinarizer : Transform between iterable of iterables and a multilabel format. Notes ----- If `func` returns an output with a `columns` attribute, then the columns is enforced to be consistent with the output of `get_feature_names_out`. Examples -------- >>> import numpy as np >>> from sklearn.preprocessing import FunctionTransformer >>> transformer = FunctionTransformer(np.log1p) >>> X = np.array([[0, 1], [2, 3]]) >>> transformer.transform(X) array([[0. , 0.6931...], [1.0986..., 1.3862...]]) """ _parameter_constraints: dict = { "func": [callable, None], "inverse_func": [callable, None], "validate": ["boolean"], "accept_sparse": ["boolean"], "check_inverse": ["boolean"], "feature_names_out": [callable, StrOptions({"one-to-one"}), None], "kw_args": [dict, None], "inv_kw_args": [dict, None], } def __init__( self, func=None, inverse_func=None, *, validate=False, accept_sparse=False, check_inverse=True, feature_names_out=None, kw_args=None, inv_kw_args=None, ): self.func = func self.inverse_func = inverse_func self.validate = validate self.accept_sparse = accept_sparse self.check_inverse = check_inverse self.feature_names_out = feature_names_out self.kw_args = kw_args self.inv_kw_args = inv_kw_args def _check_input(self, X, *, reset): if self.validate: return self._validate_data(X, accept_sparse=self.accept_sparse, reset=reset) elif reset: # Set feature_names_in_ and n_features_in_ even if validate=False # We run this only when reset==True to store the attributes but not # validate them, because validate=False self._check_n_features(X, reset=reset) self._check_feature_names(X, reset=reset) return X def _check_inverse_transform(self, X): """Check that func and inverse_func are the inverse.""" idx_selected = slice(None, None, max(1, X.shape[0] // 100)) X_round_trip = self.inverse_transform(self.transform(X[idx_selected])) if hasattr(X, "dtype"): dtypes = [X.dtype] elif hasattr(X, "dtypes"): # Dataframes can have multiple dtypes dtypes = X.dtypes if not all(np.issubdtype(d, np.number) for d in dtypes): raise ValueError( "'check_inverse' is only supported when all the elements in `X` is" " numerical." ) if not _allclose_dense_sparse(X[idx_selected], X_round_trip): warnings.warn( ( "The provided functions are not strictly" " inverse of each other. If you are sure you" " want to proceed regardless, set" " 'check_inverse=False'." ), UserWarning, ) @_fit_context(prefer_skip_nested_validation=True) def fit(self, X, y=None): """Fit transformer by checking X. If ``validate`` is ``True``, ``X`` will be checked. Parameters ---------- X : {array-like, sparse-matrix} of shape (n_samples, n_features) \ if `validate=True` else any object that `func` can handle Input array. y : Ignored Not used, present here for API consistency by convention. Returns ------- self : object FunctionTransformer class instance. """ X = self._check_input(X, reset=True) if self.check_inverse and not (self.func is None or self.inverse_func is None): self._check_inverse_transform(X) return self def transform(self, X): """Transform X using the forward function. Parameters ---------- X : {array-like, sparse-matrix} of shape (n_samples, n_features) \ if `validate=True` else any object that `func` can handle Input array. Returns ------- X_out : array-like, shape (n_samples, n_features) Transformed input. """ X = self._check_input(X, reset=False) out = self._transform(X, func=self.func, kw_args=self.kw_args) output_config = _get_output_config("transform", self)["dense"] if hasattr(out, "columns") and self.feature_names_out is not None: # check the consistency between the column provided by `transform` and # the the column names provided by `get_feature_names_out`. feature_names_out = self.get_feature_names_out() if list(out.columns) != list(feature_names_out): # we can override the column names of the output if it is inconsistent # with the column names provided by `get_feature_names_out` in the # following cases: # * `func` preserved the column names between the input and the output # * the input column names are all numbers # * the output is requested to be a DataFrame (pandas or polars) feature_names_in = getattr( X, "feature_names_in_", _get_feature_names(X) ) same_feature_names_in_out = feature_names_in is not None and list( feature_names_in ) == list(out.columns) not_all_str_columns = not all( isinstance(col, str) for col in out.columns ) if same_feature_names_in_out or not_all_str_columns: adapter = _get_adapter_from_container(out) out = adapter.create_container( X_output=out, X_original=out, columns=feature_names_out, inplace=False, ) else: raise ValueError( "The output generated by `func` have different column names " "than the ones provided by `get_feature_names_out`. " f"Got output with columns names: {list(out.columns)} and " "`get_feature_names_out` returned: " f"{list(self.get_feature_names_out())}. " "The column names can be overridden by setting " "`set_output(transform='pandas')` or " "`set_output(transform='polars')` such that the column names " "are set to the names provided by `get_feature_names_out`." ) if self.feature_names_out is None: warn_msg = ( "When `set_output` is configured to be '{0}', `func` should return " "a {0} DataFrame to follow the `set_output` API or `feature_names_out`" " should be defined." ) if output_config == "pandas" and not _is_pandas_df(out): warnings.warn(warn_msg.format("pandas")) elif output_config == "polars" and not _is_polars_df(out): warnings.warn(warn_msg.format("polars")) return out def inverse_transform(self, X): """Transform X using the inverse function. Parameters ---------- X : {array-like, sparse-matrix} of shape (n_samples, n_features) \ if `validate=True` else any object that `inverse_func` can handle Input array. Returns ------- X_out : array-like, shape (n_samples, n_features) Transformed input. """ if self.validate: X = check_array(X, accept_sparse=self.accept_sparse) return self._transform(X, func=self.inverse_func, kw_args=self.inv_kw_args) @available_if(lambda self: self.feature_names_out is not None) def get_feature_names_out(self, input_features=None): """Get output feature names for transformation. This method is only defined if `feature_names_out` is not None. Parameters ---------- input_features : array-like of str or None, default=None Input feature names. - If `input_features` is None, then `feature_names_in_` is used as the input feature names. If `feature_names_in_` is not defined, then names are generated: `[x0, x1, ..., x(n_features_in_ - 1)]`. - If `input_features` is array-like, then `input_features` must match `feature_names_in_` if `feature_names_in_` is defined. Returns ------- feature_names_out : ndarray of str objects Transformed feature names. - If `feature_names_out` is 'one-to-one', the input feature names are returned (see `input_features` above). This requires `feature_names_in_` and/or `n_features_in_` to be defined, which is done automatically if `validate=True`. Alternatively, you can set them in `func`. - If `feature_names_out` is a callable, then it is called with two arguments, `self` and `input_features`, and its return value is returned by this method. """ if hasattr(self, "n_features_in_") or input_features is not None: input_features = _check_feature_names_in(self, input_features) if self.feature_names_out == "one-to-one": names_out = input_features elif callable(self.feature_names_out): names_out = self.feature_names_out(self, input_features) else: raise ValueError( f"feature_names_out={self.feature_names_out!r} is invalid. " 'It must either be "one-to-one" or a callable with two ' "arguments: the function transformer and an array-like of " "input feature names. The callable must return an array-like " "of output feature names." ) return np.asarray(names_out, dtype=object) def _transform(self, X, func=None, kw_args=None): if func is None: func = _identity return func(X, **(kw_args if kw_args else {})) def __sklearn_is_fitted__(self): """Return True since FunctionTransfomer is stateless.""" return True def _more_tags(self): return {"no_validation": not self.validate, "stateless": True} def set_output(self, *, transform=None): """Set output container. See :ref:`sphx_glr_auto_examples_miscellaneous_plot_set_output.py` for an example on how to use the API. Parameters ---------- transform : {"default", "pandas"}, default=None Configure output of `transform` and `fit_transform`. - `"default"`: Default output format of a transformer - `"pandas"`: DataFrame output - `"polars"`: Polars output - `None`: Transform configuration is unchanged .. versionadded:: 1.4 `"polars"` option was added. Returns ------- self : estimator instance Estimator instance. """ if not hasattr(self, "_sklearn_output_config"): self._sklearn_output_config = {} self._sklearn_output_config["transform"] = transform return self