import re import numpy as np import pytest from scipy import sparse from sklearn.exceptions import NotFittedError from sklearn.preprocessing import OneHotEncoder, OrdinalEncoder from sklearn.utils import is_scalar_nan from sklearn.utils._testing import ( _convert_container, assert_allclose, assert_array_equal, ) from sklearn.utils.fixes import CSR_CONTAINERS def test_one_hot_encoder_sparse_dense(): # check that sparse and dense will give the same results X = np.array([[3, 2, 1], [0, 1, 1]]) enc_sparse = OneHotEncoder() enc_dense = OneHotEncoder(sparse_output=False) X_trans_sparse = enc_sparse.fit_transform(X) X_trans_dense = enc_dense.fit_transform(X) assert X_trans_sparse.shape == (2, 5) assert X_trans_dense.shape == (2, 5) assert sparse.issparse(X_trans_sparse) assert not sparse.issparse(X_trans_dense) # check outcome assert_array_equal( X_trans_sparse.toarray(), [[0.0, 1.0, 0.0, 1.0, 1.0], [1.0, 0.0, 1.0, 0.0, 1.0]] ) assert_array_equal(X_trans_sparse.toarray(), X_trans_dense) @pytest.mark.parametrize("handle_unknown", ["ignore", "infrequent_if_exist"]) def test_one_hot_encoder_handle_unknown(handle_unknown): X = np.array([[0, 2, 1], [1, 0, 3], [1, 0, 2]]) X2 = np.array([[4, 1, 1]]) # Test that one hot encoder raises error for unknown features # present during transform. oh = OneHotEncoder(handle_unknown="error") oh.fit(X) with pytest.raises(ValueError, match="Found unknown categories"): oh.transform(X2) # Test the ignore option, ignores unknown features (giving all 0's) oh = OneHotEncoder(handle_unknown=handle_unknown) oh.fit(X) X2_passed = X2.copy() assert_array_equal( oh.transform(X2_passed).toarray(), np.array([[0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0]]), ) # ensure transformed data was not modified in place assert_allclose(X2, X2_passed) @pytest.mark.parametrize("handle_unknown", ["ignore", "infrequent_if_exist"]) def test_one_hot_encoder_handle_unknown_strings(handle_unknown): X = np.array(["11111111", "22", "333", "4444"]).reshape((-1, 1)) X2 = np.array(["55555", "22"]).reshape((-1, 1)) # Non Regression test for the issue #12470 # Test the ignore option, when categories are numpy string dtype # particularly when the known category strings are larger # than the unknown category strings oh = OneHotEncoder(handle_unknown=handle_unknown) oh.fit(X) X2_passed = X2.copy() assert_array_equal( oh.transform(X2_passed).toarray(), np.array([[0.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0]]), ) # ensure transformed data was not modified in place assert_array_equal(X2, X2_passed) @pytest.mark.parametrize("output_dtype", [np.int32, np.float32, np.float64]) @pytest.mark.parametrize("input_dtype", [np.int32, np.float32, np.float64]) def test_one_hot_encoder_dtype(input_dtype, output_dtype): X = np.asarray([[0, 1]], dtype=input_dtype).T X_expected = np.asarray([[1, 0], [0, 1]], dtype=output_dtype) oh = OneHotEncoder(categories="auto", dtype=output_dtype) assert_array_equal(oh.fit_transform(X).toarray(), X_expected) assert_array_equal(oh.fit(X).transform(X).toarray(), X_expected) oh = OneHotEncoder(categories="auto", dtype=output_dtype, sparse_output=False) assert_array_equal(oh.fit_transform(X), X_expected) assert_array_equal(oh.fit(X).transform(X), X_expected) @pytest.mark.parametrize("output_dtype", [np.int32, np.float32, np.float64]) def test_one_hot_encoder_dtype_pandas(output_dtype): pd = pytest.importorskip("pandas") X_df = pd.DataFrame({"A": ["a", "b"], "B": [1, 2]}) X_expected = np.array([[1, 0, 1, 0], [0, 1, 0, 1]], dtype=output_dtype) oh = OneHotEncoder(dtype=output_dtype) assert_array_equal(oh.fit_transform(X_df).toarray(), X_expected) assert_array_equal(oh.fit(X_df).transform(X_df).toarray(), X_expected) oh = OneHotEncoder(dtype=output_dtype, sparse_output=False) assert_array_equal(oh.fit_transform(X_df), X_expected) assert_array_equal(oh.fit(X_df).transform(X_df), X_expected) def test_one_hot_encoder_feature_names(): enc = OneHotEncoder() X = [ ["Male", 1, "girl", 2, 3], ["Female", 41, "girl", 1, 10], ["Male", 51, "boy", 12, 3], ["Male", 91, "girl", 21, 30], ] enc.fit(X) feature_names = enc.get_feature_names_out() assert_array_equal( [ "x0_Female", "x0_Male", "x1_1", "x1_41", "x1_51", "x1_91", "x2_boy", "x2_girl", "x3_1", "x3_2", "x3_12", "x3_21", "x4_3", "x4_10", "x4_30", ], feature_names, ) feature_names2 = enc.get_feature_names_out(["one", "two", "three", "four", "five"]) assert_array_equal( [ "one_Female", "one_Male", "two_1", "two_41", "two_51", "two_91", "three_boy", "three_girl", "four_1", "four_2", "four_12", "four_21", "five_3", "five_10", "five_30", ], feature_names2, ) with pytest.raises(ValueError, match="input_features should have length"): enc.get_feature_names_out(["one", "two"]) def test_one_hot_encoder_feature_names_unicode(): enc = OneHotEncoder() X = np.array([["c❤t1", "dat2"]], dtype=object).T enc.fit(X) feature_names = enc.get_feature_names_out() assert_array_equal(["x0_c❤t1", "x0_dat2"], feature_names) feature_names = enc.get_feature_names_out(input_features=["n👍me"]) assert_array_equal(["n👍me_c❤t1", "n👍me_dat2"], feature_names) def test_one_hot_encoder_custom_feature_name_combiner(): """Check the behaviour of `feature_name_combiner` as a callable.""" def name_combiner(feature, category): return feature + "_" + repr(category) enc = OneHotEncoder(feature_name_combiner=name_combiner) X = np.array([["None", None]], dtype=object).T enc.fit(X) feature_names = enc.get_feature_names_out() assert_array_equal(["x0_'None'", "x0_None"], feature_names) feature_names = enc.get_feature_names_out(input_features=["a"]) assert_array_equal(["a_'None'", "a_None"], feature_names) def wrong_combiner(feature, category): # we should be returning a Python string return 0 enc = OneHotEncoder(feature_name_combiner=wrong_combiner).fit(X) err_msg = ( "When `feature_name_combiner` is a callable, it should return a Python string." ) with pytest.raises(TypeError, match=err_msg): enc.get_feature_names_out() def test_one_hot_encoder_set_params(): X = np.array([[1, 2]]).T oh = OneHotEncoder() # set params on not yet fitted object oh.set_params(categories=[[0, 1, 2, 3]]) assert oh.get_params()["categories"] == [[0, 1, 2, 3]] assert oh.fit_transform(X).toarray().shape == (2, 4) # set params on already fitted object oh.set_params(categories=[[0, 1, 2, 3, 4]]) assert oh.fit_transform(X).toarray().shape == (2, 5) def check_categorical_onehot(X): enc = OneHotEncoder(categories="auto") Xtr1 = enc.fit_transform(X) enc = OneHotEncoder(categories="auto", sparse_output=False) Xtr2 = enc.fit_transform(X) assert_allclose(Xtr1.toarray(), Xtr2) assert sparse.issparse(Xtr1) and Xtr1.format == "csr" return Xtr1.toarray() @pytest.mark.parametrize( "X", [ [["def", 1, 55], ["abc", 2, 55]], np.array([[10, 1, 55], [5, 2, 55]]), np.array([["b", "A", "cat"], ["a", "B", "cat"]], dtype=object), np.array([["b", 1, "cat"], ["a", np.nan, "cat"]], dtype=object), np.array([["b", 1, "cat"], ["a", float("nan"), "cat"]], dtype=object), np.array([[None, 1, "cat"], ["a", 2, "cat"]], dtype=object), np.array([[None, 1, None], ["a", np.nan, None]], dtype=object), np.array([[None, 1, None], ["a", float("nan"), None]], dtype=object), ], ids=[ "mixed", "numeric", "object", "mixed-nan", "mixed-float-nan", "mixed-None", "mixed-None-nan", "mixed-None-float-nan", ], ) def test_one_hot_encoder(X): Xtr = check_categorical_onehot(np.array(X)[:, [0]]) assert_allclose(Xtr, [[0, 1], [1, 0]]) Xtr = check_categorical_onehot(np.array(X)[:, [0, 1]]) assert_allclose(Xtr, [[0, 1, 1, 0], [1, 0, 0, 1]]) Xtr = OneHotEncoder(categories="auto").fit_transform(X) assert_allclose(Xtr.toarray(), [[0, 1, 1, 0, 1], [1, 0, 0, 1, 1]]) @pytest.mark.parametrize("handle_unknown", ["ignore", "infrequent_if_exist"]) @pytest.mark.parametrize("sparse_", [False, True]) @pytest.mark.parametrize("drop", [None, "first"]) def test_one_hot_encoder_inverse(handle_unknown, sparse_, drop): X = [["abc", 2, 55], ["def", 1, 55], ["abc", 3, 55]] enc = OneHotEncoder(sparse_output=sparse_, drop=drop) X_tr = enc.fit_transform(X) exp = np.array(X, dtype=object) assert_array_equal(enc.inverse_transform(X_tr), exp) X = [[2, 55], [1, 55], [3, 55]] enc = OneHotEncoder(sparse_output=sparse_, categories="auto", drop=drop) X_tr = enc.fit_transform(X) exp = np.array(X) assert_array_equal(enc.inverse_transform(X_tr), exp) if drop is None: # with unknown categories # drop is incompatible with handle_unknown=ignore X = [["abc", 2, 55], ["def", 1, 55], ["abc", 3, 55]] enc = OneHotEncoder( sparse_output=sparse_, handle_unknown=handle_unknown, categories=[["abc", "def"], [1, 2], [54, 55, 56]], ) X_tr = enc.fit_transform(X) exp = np.array(X, dtype=object) exp[2, 1] = None assert_array_equal(enc.inverse_transform(X_tr), exp) # with an otherwise numerical output, still object if unknown X = [[2, 55], [1, 55], [3, 55]] enc = OneHotEncoder( sparse_output=sparse_, categories=[[1, 2], [54, 56]], handle_unknown=handle_unknown, ) X_tr = enc.fit_transform(X) exp = np.array(X, dtype=object) exp[2, 0] = None exp[:, 1] = None assert_array_equal(enc.inverse_transform(X_tr), exp) # incorrect shape raises X_tr = np.array([[0, 1, 1], [1, 0, 1]]) msg = re.escape("Shape of the passed X data is not correct") with pytest.raises(ValueError, match=msg): enc.inverse_transform(X_tr) @pytest.mark.parametrize("sparse_", [False, True]) @pytest.mark.parametrize( "X, X_trans", [ ([[2, 55], [1, 55], [2, 55]], [[0, 1, 1], [0, 0, 0], [0, 1, 1]]), ( [["one", "a"], ["two", "a"], ["three", "b"], ["two", "a"]], [[0, 0, 0, 0, 0], [0, 0, 0, 0, 1], [0, 1, 0, 0, 0]], ), ], ) def test_one_hot_encoder_inverse_transform_raise_error_with_unknown( X, X_trans, sparse_ ): """Check that `inverse_transform` raise an error with unknown samples, no dropped feature, and `handle_unknow="error`. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/14934 """ enc = OneHotEncoder(sparse_output=sparse_).fit(X) msg = ( r"Samples \[(\d )*\d\] can not be inverted when drop=None and " r"handle_unknown='error' because they contain all zeros" ) if sparse_: # emulate sparse data transform by a one-hot encoder sparse. X_trans = _convert_container(X_trans, "sparse") with pytest.raises(ValueError, match=msg): enc.inverse_transform(X_trans) def test_one_hot_encoder_inverse_if_binary(): X = np.array([["Male", 1], ["Female", 3], ["Female", 2]], dtype=object) ohe = OneHotEncoder(drop="if_binary", sparse_output=False) X_tr = ohe.fit_transform(X) assert_array_equal(ohe.inverse_transform(X_tr), X) @pytest.mark.parametrize("drop", ["if_binary", "first", None]) @pytest.mark.parametrize("reset_drop", ["if_binary", "first", None]) def test_one_hot_encoder_drop_reset(drop, reset_drop): # check that resetting drop option without refitting does not throw an error X = np.array([["Male", 1], ["Female", 3], ["Female", 2]], dtype=object) ohe = OneHotEncoder(drop=drop, sparse_output=False) ohe.fit(X) X_tr = ohe.transform(X) feature_names = ohe.get_feature_names_out() ohe.set_params(drop=reset_drop) assert_array_equal(ohe.inverse_transform(X_tr), X) assert_allclose(ohe.transform(X), X_tr) assert_array_equal(ohe.get_feature_names_out(), feature_names) @pytest.mark.parametrize("method", ["fit", "fit_transform"]) @pytest.mark.parametrize("X", [[1, 2], np.array([3.0, 4.0])]) def test_X_is_not_1D(X, method): oh = OneHotEncoder() msg = "Expected 2D array, got 1D array instead" with pytest.raises(ValueError, match=msg): getattr(oh, method)(X) @pytest.mark.parametrize("method", ["fit", "fit_transform"]) def test_X_is_not_1D_pandas(method): pd = pytest.importorskip("pandas") X = pd.Series([6, 3, 4, 6]) oh = OneHotEncoder() msg = f"Expected a 2-dimensional container but got {type(X)} instead." with pytest.raises(ValueError, match=msg): getattr(oh, method)(X) @pytest.mark.parametrize( "X, cat_exp, cat_dtype", [ ([["abc", 55], ["def", 55]], [["abc", "def"], [55]], np.object_), (np.array([[1, 2], [3, 2]]), [[1, 3], [2]], np.integer), ( np.array([["A", "cat"], ["B", "cat"]], dtype=object), [["A", "B"], ["cat"]], np.object_, ), (np.array([["A", "cat"], ["B", "cat"]]), [["A", "B"], ["cat"]], np.str_), (np.array([[1, 2], [np.nan, 2]]), [[1, np.nan], [2]], np.float64), ( np.array([["A", np.nan], [None, np.nan]], dtype=object), [["A", None], [np.nan]], np.object_, ), ( np.array([["A", float("nan")], [None, float("nan")]], dtype=object), [["A", None], [float("nan")]], np.object_, ), ], ids=[ "mixed", "numeric", "object", "string", "missing-float", "missing-np.nan-object", "missing-float-nan-object", ], ) def test_one_hot_encoder_categories(X, cat_exp, cat_dtype): # order of categories should not depend on order of samples for Xi in [X, X[::-1]]: enc = OneHotEncoder(categories="auto") enc.fit(Xi) # assert enc.categories == 'auto' assert isinstance(enc.categories_, list) for res, exp in zip(enc.categories_, cat_exp): res_list = res.tolist() if is_scalar_nan(exp[-1]): assert is_scalar_nan(res_list[-1]) assert res_list[:-1] == exp[:-1] else: assert res.tolist() == exp assert np.issubdtype(res.dtype, cat_dtype) @pytest.mark.parametrize("handle_unknown", ["ignore", "infrequent_if_exist"]) @pytest.mark.parametrize( "X, X2, cats, cat_dtype", [ ( np.array([["a", "b"]], dtype=object).T, np.array([["a", "d"]], dtype=object).T, [["a", "b", "c"]], np.object_, ), ( np.array([[1, 2]], dtype="int64").T, np.array([[1, 4]], dtype="int64").T, [[1, 2, 3]], np.int64, ), ( np.array([["a", "b"]], dtype=object).T, np.array([["a", "d"]], dtype=object).T, [np.array(["a", "b", "c"])], np.object_, ), ( np.array([[None, "a"]], dtype=object).T, np.array([[None, "b"]], dtype=object).T, [[None, "a", "z"]], object, ), ( np.array([["a", "b"]], dtype=object).T, np.array([["a", np.nan]], dtype=object).T, [["a", "b", "z"]], object, ), ( np.array([["a", None]], dtype=object).T, np.array([["a", np.nan]], dtype=object).T, [["a", None, "z"]], object, ), ], ids=[ "object", "numeric", "object-string", "object-string-none", "object-string-nan", "object-None-and-nan", ], ) def test_one_hot_encoder_specified_categories(X, X2, cats, cat_dtype, handle_unknown): enc = OneHotEncoder(categories=cats) exp = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]]) assert_array_equal(enc.fit_transform(X).toarray(), exp) assert list(enc.categories[0]) == list(cats[0]) assert enc.categories_[0].tolist() == list(cats[0]) # manually specified categories should have same dtype as # the data when coerced from lists assert enc.categories_[0].dtype == cat_dtype # when specifying categories manually, unknown categories should already # raise when fitting enc = OneHotEncoder(categories=cats) with pytest.raises(ValueError, match="Found unknown categories"): enc.fit(X2) enc = OneHotEncoder(categories=cats, handle_unknown=handle_unknown) exp = np.array([[1.0, 0.0, 0.0], [0.0, 0.0, 0.0]]) assert_array_equal(enc.fit(X2).transform(X2).toarray(), exp) def test_one_hot_encoder_unsorted_categories(): X = np.array([["a", "b"]], dtype=object).T enc = OneHotEncoder(categories=[["b", "a", "c"]]) exp = np.array([[0.0, 1.0, 0.0], [1.0, 0.0, 0.0]]) assert_array_equal(enc.fit(X).transform(X).toarray(), exp) assert_array_equal(enc.fit_transform(X).toarray(), exp) assert enc.categories_[0].tolist() == ["b", "a", "c"] assert np.issubdtype(enc.categories_[0].dtype, np.object_) # unsorted passed categories still raise for numerical values X = np.array([[1, 2]]).T enc = OneHotEncoder(categories=[[2, 1, 3]]) msg = "Unsorted categories are not supported" with pytest.raises(ValueError, match=msg): enc.fit_transform(X) @pytest.mark.parametrize("Encoder", [OneHotEncoder, OrdinalEncoder]) def test_encoder_nan_ending_specified_categories(Encoder): """Test encoder for specified categories that nan is at the end. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/27088 """ cats = [np.array([0, np.nan, 1])] enc = Encoder(categories=cats) X = np.array([[0, 1]], dtype=object).T with pytest.raises(ValueError, match="Nan should be the last element"): enc.fit(X) def test_one_hot_encoder_specified_categories_mixed_columns(): # multiple columns X = np.array([["a", "b"], [0, 2]], dtype=object).T enc = OneHotEncoder(categories=[["a", "b", "c"], [0, 1, 2]]) exp = np.array([[1.0, 0.0, 0.0, 1.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0, 1.0]]) assert_array_equal(enc.fit_transform(X).toarray(), exp) assert enc.categories_[0].tolist() == ["a", "b", "c"] assert np.issubdtype(enc.categories_[0].dtype, np.object_) assert enc.categories_[1].tolist() == [0, 1, 2] # integer categories but from object dtype data assert np.issubdtype(enc.categories_[1].dtype, np.object_) def test_one_hot_encoder_pandas(): pd = pytest.importorskip("pandas") X_df = pd.DataFrame({"A": ["a", "b"], "B": [1, 2]}) Xtr = check_categorical_onehot(X_df) assert_allclose(Xtr, [[1, 0, 1, 0], [0, 1, 0, 1]]) @pytest.mark.parametrize( "drop, expected_names", [ ("first", ["x0_c", "x2_b"]), ("if_binary", ["x0_c", "x1_2", "x2_b"]), (["c", 2, "b"], ["x0_b", "x2_a"]), ], ids=["first", "binary", "manual"], ) def test_one_hot_encoder_feature_names_drop(drop, expected_names): X = [["c", 2, "a"], ["b", 2, "b"]] ohe = OneHotEncoder(drop=drop) ohe.fit(X) feature_names = ohe.get_feature_names_out() assert_array_equal(expected_names, feature_names) def test_one_hot_encoder_drop_equals_if_binary(): # Canonical case X = [[10, "yes"], [20, "no"], [30, "yes"]] expected = np.array( [[1.0, 0.0, 0.0, 1.0], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 1.0]] ) expected_drop_idx = np.array([None, 0]) ohe = OneHotEncoder(drop="if_binary", sparse_output=False) result = ohe.fit_transform(X) assert_array_equal(ohe.drop_idx_, expected_drop_idx) assert_allclose(result, expected) # with only one cat, the behaviour is equivalent to drop=None X = [["true", "a"], ["false", "a"], ["false", "a"]] expected = np.array([[1.0, 1.0], [0.0, 1.0], [0.0, 1.0]]) expected_drop_idx = np.array([0, None]) ohe = OneHotEncoder(drop="if_binary", sparse_output=False) result = ohe.fit_transform(X) assert_array_equal(ohe.drop_idx_, expected_drop_idx) assert_allclose(result, expected) @pytest.mark.parametrize( "X", [ [["abc", 2, 55], ["def", 1, 55]], np.array([[10, 2, 55], [20, 1, 55]]), np.array([["a", "B", "cat"], ["b", "A", "cat"]], dtype=object), ], ids=["mixed", "numeric", "object"], ) def test_ordinal_encoder(X): enc = OrdinalEncoder() exp = np.array([[0, 1, 0], [1, 0, 0]], dtype="int64") assert_array_equal(enc.fit_transform(X), exp.astype("float64")) enc = OrdinalEncoder(dtype="int64") assert_array_equal(enc.fit_transform(X), exp) @pytest.mark.parametrize( "X, X2, cats, cat_dtype", [ ( np.array([["a", "b"]], dtype=object).T, np.array([["a", "d"]], dtype=object).T, [["a", "b", "c"]], np.object_, ), ( np.array([[1, 2]], dtype="int64").T, np.array([[1, 4]], dtype="int64").T, [[1, 2, 3]], np.int64, ), ( np.array([["a", "b"]], dtype=object).T, np.array([["a", "d"]], dtype=object).T, [np.array(["a", "b", "c"])], np.object_, ), ], ids=["object", "numeric", "object-string-cat"], ) def test_ordinal_encoder_specified_categories(X, X2, cats, cat_dtype): enc = OrdinalEncoder(categories=cats) exp = np.array([[0.0], [1.0]]) assert_array_equal(enc.fit_transform(X), exp) assert list(enc.categories[0]) == list(cats[0]) assert enc.categories_[0].tolist() == list(cats[0]) # manually specified categories should have same dtype as # the data when coerced from lists assert enc.categories_[0].dtype == cat_dtype # when specifying categories manually, unknown categories should already # raise when fitting enc = OrdinalEncoder(categories=cats) with pytest.raises(ValueError, match="Found unknown categories"): enc.fit(X2) def test_ordinal_encoder_inverse(): X = [["abc", 2, 55], ["def", 1, 55]] enc = OrdinalEncoder() X_tr = enc.fit_transform(X) exp = np.array(X, dtype=object) assert_array_equal(enc.inverse_transform(X_tr), exp) # incorrect shape raises X_tr = np.array([[0, 1, 1, 2], [1, 0, 1, 0]]) msg = re.escape("Shape of the passed X data is not correct") with pytest.raises(ValueError, match=msg): enc.inverse_transform(X_tr) def test_ordinal_encoder_handle_unknowns_string(): enc = OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=-2) X_fit = np.array([["a", "x"], ["b", "y"], ["c", "z"]], dtype=object) X_trans = np.array([["c", "xy"], ["bla", "y"], ["a", "x"]], dtype=object) enc.fit(X_fit) X_trans_enc = enc.transform(X_trans) exp = np.array([[2, -2], [-2, 1], [0, 0]], dtype="int64") assert_array_equal(X_trans_enc, exp) X_trans_inv = enc.inverse_transform(X_trans_enc) inv_exp = np.array([["c", None], [None, "y"], ["a", "x"]], dtype=object) assert_array_equal(X_trans_inv, inv_exp) @pytest.mark.parametrize("dtype", [float, int]) def test_ordinal_encoder_handle_unknowns_numeric(dtype): enc = OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=-999) X_fit = np.array([[1, 7], [2, 8], [3, 9]], dtype=dtype) X_trans = np.array([[3, 12], [23, 8], [1, 7]], dtype=dtype) enc.fit(X_fit) X_trans_enc = enc.transform(X_trans) exp = np.array([[2, -999], [-999, 1], [0, 0]], dtype="int64") assert_array_equal(X_trans_enc, exp) X_trans_inv = enc.inverse_transform(X_trans_enc) inv_exp = np.array([[3, None], [None, 8], [1, 7]], dtype=object) assert_array_equal(X_trans_inv, inv_exp) def test_ordinal_encoder_handle_unknowns_nan(): # Make sure unknown_value=np.nan properly works enc = OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=np.nan) X_fit = np.array([[1], [2], [3]]) enc.fit(X_fit) X_trans = enc.transform([[1], [2], [4]]) assert_array_equal(X_trans, [[0], [1], [np.nan]]) def test_ordinal_encoder_handle_unknowns_nan_non_float_dtype(): # Make sure an error is raised when unknown_value=np.nan and the dtype # isn't a float dtype enc = OrdinalEncoder( handle_unknown="use_encoded_value", unknown_value=np.nan, dtype=int ) X_fit = np.array([[1], [2], [3]]) with pytest.raises(ValueError, match="dtype parameter should be a float dtype"): enc.fit(X_fit) def test_ordinal_encoder_raise_categories_shape(): X = np.array([["Low", "Medium", "High", "Medium", "Low"]], dtype=object).T cats = ["Low", "Medium", "High"] enc = OrdinalEncoder(categories=cats) msg = "Shape mismatch: if categories is an array," with pytest.raises(ValueError, match=msg): enc.fit(X) def test_encoder_dtypes(): # check that dtypes are preserved when determining categories enc = OneHotEncoder(categories="auto") exp = np.array([[1.0, 0.0, 1.0, 0.0], [0.0, 1.0, 0.0, 1.0]], dtype="float64") for X in [ np.array([[1, 2], [3, 4]], dtype="int64"), np.array([[1, 2], [3, 4]], dtype="float64"), np.array([["a", "b"], ["c", "d"]]), # str dtype np.array([[b"a", b"b"], [b"c", b"d"]]), # bytes dtype np.array([[1, "a"], [3, "b"]], dtype="object"), ]: enc.fit(X) assert all([enc.categories_[i].dtype == X.dtype for i in range(2)]) assert_array_equal(enc.transform(X).toarray(), exp) X = [[1, 2], [3, 4]] enc.fit(X) assert all([np.issubdtype(enc.categories_[i].dtype, np.integer) for i in range(2)]) assert_array_equal(enc.transform(X).toarray(), exp) X = [[1, "a"], [3, "b"]] enc.fit(X) assert all([enc.categories_[i].dtype == "object" for i in range(2)]) assert_array_equal(enc.transform(X).toarray(), exp) def test_encoder_dtypes_pandas(): # check dtype (similar to test_categorical_encoder_dtypes for dataframes) pd = pytest.importorskip("pandas") enc = OneHotEncoder(categories="auto") exp = np.array( [[1.0, 0.0, 1.0, 0.0, 1.0, 0.0], [0.0, 1.0, 0.0, 1.0, 0.0, 1.0]], dtype="float64", ) X = pd.DataFrame({"A": [1, 2], "B": [3, 4], "C": [5, 6]}, dtype="int64") enc.fit(X) assert all([enc.categories_[i].dtype == "int64" for i in range(2)]) assert_array_equal(enc.transform(X).toarray(), exp) X = pd.DataFrame({"A": [1, 2], "B": ["a", "b"], "C": [3.0, 4.0]}) X_type = [X["A"].dtype, X["B"].dtype, X["C"].dtype] enc.fit(X) assert all([enc.categories_[i].dtype == X_type[i] for i in range(3)]) assert_array_equal(enc.transform(X).toarray(), exp) def test_one_hot_encoder_warning(): enc = OneHotEncoder() X = [["Male", 1], ["Female", 3]] np.testing.assert_no_warnings(enc.fit_transform, X) @pytest.mark.parametrize("missing_value", [np.nan, None, float("nan")]) def test_one_hot_encoder_drop_manual(missing_value): cats_to_drop = ["def", 12, 3, 56, missing_value] enc = OneHotEncoder(drop=cats_to_drop) X = [ ["abc", 12, 2, 55, "a"], ["def", 12, 1, 55, "a"], ["def", 12, 3, 56, missing_value], ] trans = enc.fit_transform(X).toarray() exp = [[1, 0, 1, 1, 1], [0, 1, 0, 1, 1], [0, 0, 0, 0, 0]] assert_array_equal(trans, exp) assert enc.drop is cats_to_drop dropped_cats = [ cat[feature] for cat, feature in zip(enc.categories_, enc.drop_idx_) ] X_inv_trans = enc.inverse_transform(trans) X_array = np.array(X, dtype=object) # last value is np.nan if is_scalar_nan(cats_to_drop[-1]): assert_array_equal(dropped_cats[:-1], cats_to_drop[:-1]) assert is_scalar_nan(dropped_cats[-1]) assert is_scalar_nan(cats_to_drop[-1]) # do not include the last column which includes missing values assert_array_equal(X_array[:, :-1], X_inv_trans[:, :-1]) # check last column is the missing value assert_array_equal(X_array[-1, :-1], X_inv_trans[-1, :-1]) assert is_scalar_nan(X_array[-1, -1]) assert is_scalar_nan(X_inv_trans[-1, -1]) else: assert_array_equal(dropped_cats, cats_to_drop) assert_array_equal(X_array, X_inv_trans) @pytest.mark.parametrize("drop", [["abc", 3], ["abc", 3, 41, "a"]]) def test_invalid_drop_length(drop): enc = OneHotEncoder(drop=drop) err_msg = "`drop` should have length equal to the number" with pytest.raises(ValueError, match=err_msg): enc.fit([["abc", 2, 55], ["def", 1, 55], ["def", 3, 59]]) @pytest.mark.parametrize("density", [True, False], ids=["sparse", "dense"]) @pytest.mark.parametrize("drop", ["first", ["a", 2, "b"]], ids=["first", "manual"]) def test_categories(density, drop): ohe_base = OneHotEncoder(sparse_output=density) ohe_test = OneHotEncoder(sparse_output=density, drop=drop) X = [["c", 1, "a"], ["a", 2, "b"]] ohe_base.fit(X) ohe_test.fit(X) assert_array_equal(ohe_base.categories_, ohe_test.categories_) if drop == "first": assert_array_equal(ohe_test.drop_idx_, 0) else: for drop_cat, drop_idx, cat_list in zip( drop, ohe_test.drop_idx_, ohe_test.categories_ ): assert cat_list[int(drop_idx)] == drop_cat assert isinstance(ohe_test.drop_idx_, np.ndarray) assert ohe_test.drop_idx_.dtype == object @pytest.mark.parametrize("Encoder", [OneHotEncoder, OrdinalEncoder]) def test_encoders_has_categorical_tags(Encoder): assert "categorical" in Encoder()._get_tags()["X_types"] @pytest.mark.parametrize( "kwargs", [ {"max_categories": 2}, {"min_frequency": 11}, {"min_frequency": 0.29}, {"max_categories": 2, "min_frequency": 6}, {"max_categories": 4, "min_frequency": 12}, ], ) @pytest.mark.parametrize("categories", ["auto", [["a", "b", "c", "d"]]]) def test_ohe_infrequent_two_levels(kwargs, categories): """Test that different parameters for combine 'a', 'c', and 'd' into the infrequent category works as expected.""" X_train = np.array([["a"] * 5 + ["b"] * 20 + ["c"] * 10 + ["d"] * 3]).T ohe = OneHotEncoder( categories=categories, handle_unknown="infrequent_if_exist", sparse_output=False, **kwargs, ).fit(X_train) assert_array_equal(ohe.infrequent_categories_, [["a", "c", "d"]]) X_test = [["b"], ["a"], ["c"], ["d"], ["e"]] expected = np.array([[1, 0], [0, 1], [0, 1], [0, 1], [0, 1]]) X_trans = ohe.transform(X_test) assert_allclose(expected, X_trans) expected_inv = [[col] for col in ["b"] + ["infrequent_sklearn"] * 4] X_inv = ohe.inverse_transform(X_trans) assert_array_equal(expected_inv, X_inv) feature_names = ohe.get_feature_names_out() assert_array_equal(["x0_b", "x0_infrequent_sklearn"], feature_names) @pytest.mark.parametrize("drop", ["if_binary", "first", ["b"]]) def test_ohe_infrequent_two_levels_drop_frequent(drop): """Test two levels and dropping the frequent category.""" X_train = np.array([["a"] * 5 + ["b"] * 20 + ["c"] * 10 + ["d"] * 3]).T ohe = OneHotEncoder( handle_unknown="infrequent_if_exist", sparse_output=False, max_categories=2, drop=drop, ).fit(X_train) assert ohe.categories_[0][ohe.drop_idx_[0]] == "b" X_test = np.array([["b"], ["c"]]) X_trans = ohe.transform(X_test) assert_allclose([[0], [1]], X_trans) feature_names = ohe.get_feature_names_out() assert_array_equal(["x0_infrequent_sklearn"], feature_names) X_inverse = ohe.inverse_transform(X_trans) assert_array_equal([["b"], ["infrequent_sklearn"]], X_inverse) @pytest.mark.parametrize("drop", [["a"], ["d"]]) def test_ohe_infrequent_two_levels_drop_infrequent_errors(drop): """Test two levels and dropping any infrequent category removes the whole infrequent category.""" X_train = np.array([["a"] * 5 + ["b"] * 20 + ["c"] * 10 + ["d"] * 3]).T ohe = OneHotEncoder( handle_unknown="infrequent_if_exist", sparse_output=False, max_categories=2, drop=drop, ) msg = f"Unable to drop category {drop[0]!r} from feature 0 because it is infrequent" with pytest.raises(ValueError, match=msg): ohe.fit(X_train) @pytest.mark.parametrize( "kwargs", [ {"max_categories": 3}, {"min_frequency": 6}, {"min_frequency": 9}, {"min_frequency": 0.24}, {"min_frequency": 0.16}, {"max_categories": 3, "min_frequency": 8}, {"max_categories": 4, "min_frequency": 6}, ], ) def test_ohe_infrequent_three_levels(kwargs): """Test that different parameters for combing 'a', and 'd' into the infrequent category works as expected.""" X_train = np.array([["a"] * 5 + ["b"] * 20 + ["c"] * 10 + ["d"] * 3]).T ohe = OneHotEncoder( handle_unknown="infrequent_if_exist", sparse_output=False, **kwargs ).fit(X_train) assert_array_equal(ohe.infrequent_categories_, [["a", "d"]]) X_test = [["b"], ["a"], ["c"], ["d"], ["e"]] expected = np.array([[1, 0, 0], [0, 0, 1], [0, 1, 0], [0, 0, 1], [0, 0, 1]]) X_trans = ohe.transform(X_test) assert_allclose(expected, X_trans) expected_inv = [ ["b"], ["infrequent_sklearn"], ["c"], ["infrequent_sklearn"], ["infrequent_sklearn"], ] X_inv = ohe.inverse_transform(X_trans) assert_array_equal(expected_inv, X_inv) feature_names = ohe.get_feature_names_out() assert_array_equal(["x0_b", "x0_c", "x0_infrequent_sklearn"], feature_names) @pytest.mark.parametrize("drop", ["first", ["b"]]) def test_ohe_infrequent_three_levels_drop_frequent(drop): """Test three levels and dropping the frequent category.""" X_train = np.array([["a"] * 5 + ["b"] * 20 + ["c"] * 10 + ["d"] * 3]).T ohe = OneHotEncoder( handle_unknown="infrequent_if_exist", sparse_output=False, max_categories=3, drop=drop, ).fit(X_train) X_test = np.array([["b"], ["c"], ["d"]]) assert_allclose([[0, 0], [1, 0], [0, 1]], ohe.transform(X_test)) # Check handle_unknown="ignore" ohe.set_params(handle_unknown="ignore").fit(X_train) msg = "Found unknown categories" with pytest.warns(UserWarning, match=msg): X_trans = ohe.transform([["b"], ["e"]]) assert_allclose([[0, 0], [0, 0]], X_trans) @pytest.mark.parametrize("drop", [["a"], ["d"]]) def test_ohe_infrequent_three_levels_drop_infrequent_errors(drop): """Test three levels and dropping the infrequent category.""" X_train = np.array([["a"] * 5 + ["b"] * 20 + ["c"] * 10 + ["d"] * 3]).T ohe = OneHotEncoder( handle_unknown="infrequent_if_exist", sparse_output=False, max_categories=3, drop=drop, ) msg = f"Unable to drop category {drop[0]!r} from feature 0 because it is infrequent" with pytest.raises(ValueError, match=msg): ohe.fit(X_train) def test_ohe_infrequent_handle_unknown_error(): """Test that different parameters for combining 'a', and 'd' into the infrequent category works as expected.""" X_train = np.array([["a"] * 5 + ["b"] * 20 + ["c"] * 10 + ["d"] * 3]).T ohe = OneHotEncoder( handle_unknown="error", sparse_output=False, max_categories=3 ).fit(X_train) assert_array_equal(ohe.infrequent_categories_, [["a", "d"]]) # all categories are known X_test = [["b"], ["a"], ["c"], ["d"]] expected = np.array([[1, 0, 0], [0, 0, 1], [0, 1, 0], [0, 0, 1]]) X_trans = ohe.transform(X_test) assert_allclose(expected, X_trans) # 'bad' is not known and will error X_test = [["bad"]] msg = r"Found unknown categories \['bad'\] in column 0" with pytest.raises(ValueError, match=msg): ohe.transform(X_test) @pytest.mark.parametrize( "kwargs", [{"max_categories": 3, "min_frequency": 1}, {"min_frequency": 4}] ) def test_ohe_infrequent_two_levels_user_cats_one_frequent(kwargs): """'a' is the only frequent category, all other categories are infrequent.""" X_train = np.array([["a"] * 5 + ["e"] * 30], dtype=object).T ohe = OneHotEncoder( categories=[["c", "d", "a", "b"]], sparse_output=False, handle_unknown="infrequent_if_exist", **kwargs, ).fit(X_train) X_test = [["a"], ["b"], ["c"], ["d"], ["e"]] expected = np.array([[1, 0], [0, 1], [0, 1], [0, 1], [0, 1]]) X_trans = ohe.transform(X_test) assert_allclose(expected, X_trans) # 'a' is dropped drops = ["first", "if_binary", ["a"]] X_test = [["a"], ["c"]] for drop in drops: ohe.set_params(drop=drop).fit(X_train) assert_allclose([[0], [1]], ohe.transform(X_test)) def test_ohe_infrequent_two_levels_user_cats(): """Test that the order of the categories provided by a user is respected.""" X_train = np.array( [["a"] * 5 + ["b"] * 20 + ["c"] * 10 + ["d"] * 3], dtype=object ).T ohe = OneHotEncoder( categories=[["c", "d", "a", "b"]], sparse_output=False, handle_unknown="infrequent_if_exist", max_categories=2, ).fit(X_train) assert_array_equal(ohe.infrequent_categories_, [["c", "d", "a"]]) X_test = [["b"], ["a"], ["c"], ["d"], ["e"]] expected = np.array([[1, 0], [0, 1], [0, 1], [0, 1], [0, 1]]) X_trans = ohe.transform(X_test) assert_allclose(expected, X_trans) # 'infrequent' is used to denote the infrequent categories for # `inverse_transform` expected_inv = [[col] for col in ["b"] + ["infrequent_sklearn"] * 4] X_inv = ohe.inverse_transform(X_trans) assert_array_equal(expected_inv, X_inv) def test_ohe_infrequent_three_levels_user_cats(): """Test that the order of the categories provided by a user is respected. In this case 'c' is encoded as the first category and 'b' is encoded as the second one.""" X_train = np.array( [["a"] * 5 + ["b"] * 20 + ["c"] * 10 + ["d"] * 3], dtype=object ).T ohe = OneHotEncoder( categories=[["c", "d", "b", "a"]], sparse_output=False, handle_unknown="infrequent_if_exist", max_categories=3, ).fit(X_train) assert_array_equal(ohe.infrequent_categories_, [["d", "a"]]) X_test = [["b"], ["a"], ["c"], ["d"], ["e"]] expected = np.array([[0, 1, 0], [0, 0, 1], [1, 0, 0], [0, 0, 1], [0, 0, 1]]) X_trans = ohe.transform(X_test) assert_allclose(expected, X_trans) # 'infrequent' is used to denote the infrequent categories for # `inverse_transform` expected_inv = [ ["b"], ["infrequent_sklearn"], ["c"], ["infrequent_sklearn"], ["infrequent_sklearn"], ] X_inv = ohe.inverse_transform(X_trans) assert_array_equal(expected_inv, X_inv) def test_ohe_infrequent_mixed(): """Test infrequent categories where feature 0 has infrequent categories, and feature 1 does not.""" # X[:, 0] 1 and 2 are infrequent # X[:, 1] nothing is infrequent X = np.c_[[0, 1, 3, 3, 3, 3, 2, 0, 3], [0, 0, 0, 0, 1, 1, 1, 1, 1]] ohe = OneHotEncoder(max_categories=3, drop="if_binary", sparse_output=False) ohe.fit(X) X_test = [[3, 0], [1, 1]] X_trans = ohe.transform(X_test) # feature 1 is binary so it drops a category 0 assert_allclose(X_trans, [[0, 1, 0, 0], [0, 0, 1, 1]]) def test_ohe_infrequent_multiple_categories(): """Test infrequent categories with feature matrix with 3 features.""" X = np.c_[ [0, 1, 3, 3, 3, 3, 2, 0, 3], [0, 0, 5, 1, 1, 10, 5, 5, 0], [1, 0, 1, 0, 1, 0, 1, 0, 1], ] ohe = OneHotEncoder( categories="auto", max_categories=3, handle_unknown="infrequent_if_exist" ) # X[:, 0] 1 and 2 are infrequent # X[:, 1] 1 and 10 are infrequent # X[:, 2] nothing is infrequent X_trans = ohe.fit_transform(X).toarray() assert_array_equal(ohe.infrequent_categories_[0], [1, 2]) assert_array_equal(ohe.infrequent_categories_[1], [1, 10]) assert_array_equal(ohe.infrequent_categories_[2], None) # 'infrequent' is used to denote the infrequent categories # For the first column, 1 and 2 have the same frequency. In this case, # 1 will be chosen to be the feature name because is smaller lexiconically feature_names = ohe.get_feature_names_out() assert_array_equal( [ "x0_0", "x0_3", "x0_infrequent_sklearn", "x1_0", "x1_5", "x1_infrequent_sklearn", "x2_0", "x2_1", ], feature_names, ) expected = [ [1, 0, 0, 1, 0, 0, 0, 1], [0, 0, 1, 1, 0, 0, 1, 0], [0, 1, 0, 0, 1, 0, 0, 1], [0, 1, 0, 0, 0, 1, 1, 0], [0, 1, 0, 0, 0, 1, 0, 1], [0, 1, 0, 0, 0, 1, 1, 0], [0, 0, 1, 0, 1, 0, 0, 1], [1, 0, 0, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 0, 0, 1], ] assert_allclose(expected, X_trans) X_test = [[3, 1, 2], [4, 0, 3]] X_test_trans = ohe.transform(X_test) # X[:, 2] does not have an infrequent category, thus it is encoded as all # zeros expected = [[0, 1, 0, 0, 0, 1, 0, 0], [0, 0, 1, 1, 0, 0, 0, 0]] assert_allclose(expected, X_test_trans.toarray()) X_inv = ohe.inverse_transform(X_test_trans) expected_inv = np.array( [[3, "infrequent_sklearn", None], ["infrequent_sklearn", 0, None]], dtype=object ) assert_array_equal(expected_inv, X_inv) # error for unknown categories ohe = OneHotEncoder( categories="auto", max_categories=3, handle_unknown="error" ).fit(X) with pytest.raises(ValueError, match="Found unknown categories"): ohe.transform(X_test) # only infrequent or known categories X_test = [[1, 1, 1], [3, 10, 0]] X_test_trans = ohe.transform(X_test) expected = [[0, 0, 1, 0, 0, 1, 0, 1], [0, 1, 0, 0, 0, 1, 1, 0]] assert_allclose(expected, X_test_trans.toarray()) X_inv = ohe.inverse_transform(X_test_trans) expected_inv = np.array( [["infrequent_sklearn", "infrequent_sklearn", 1], [3, "infrequent_sklearn", 0]], dtype=object, ) assert_array_equal(expected_inv, X_inv) def test_ohe_infrequent_multiple_categories_dtypes(): """Test infrequent categories with a pandas dataframe with multiple dtypes.""" pd = pytest.importorskip("pandas") X = pd.DataFrame( { "str": ["a", "f", "c", "f", "f", "a", "c", "b", "b"], "int": [5, 3, 0, 10, 10, 12, 0, 3, 5], }, columns=["str", "int"], ) ohe = OneHotEncoder( categories="auto", max_categories=3, handle_unknown="infrequent_if_exist" ) # X[:, 0] 'a', 'b', 'c' have the same frequency. 'a' and 'b' will be # considered infrequent because they are greater # X[:, 1] 0, 3, 5, 10 has frequency 2 and 12 has frequency 1. # 0, 3, 12 will be considered infrequent X_trans = ohe.fit_transform(X).toarray() assert_array_equal(ohe.infrequent_categories_[0], ["a", "b"]) assert_array_equal(ohe.infrequent_categories_[1], [0, 3, 12]) expected = [ [0, 0, 1, 1, 0, 0], [0, 1, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1], [0, 1, 0, 0, 1, 0], [0, 1, 0, 0, 1, 0], [0, 0, 1, 0, 0, 1], [1, 0, 0, 0, 0, 1], [0, 0, 1, 0, 0, 1], [0, 0, 1, 1, 0, 0], ] assert_allclose(expected, X_trans) X_test = pd.DataFrame({"str": ["b", "f"], "int": [14, 12]}, columns=["str", "int"]) expected = [[0, 0, 1, 0, 0, 1], [0, 1, 0, 0, 0, 1]] X_test_trans = ohe.transform(X_test) assert_allclose(expected, X_test_trans.toarray()) X_inv = ohe.inverse_transform(X_test_trans) expected_inv = np.array( [["infrequent_sklearn", "infrequent_sklearn"], ["f", "infrequent_sklearn"]], dtype=object, ) assert_array_equal(expected_inv, X_inv) # only infrequent or known categories X_test = pd.DataFrame({"str": ["c", "b"], "int": [12, 5]}, columns=["str", "int"]) X_test_trans = ohe.transform(X_test).toarray() expected = [[1, 0, 0, 0, 0, 1], [0, 0, 1, 1, 0, 0]] assert_allclose(expected, X_test_trans) X_inv = ohe.inverse_transform(X_test_trans) expected_inv = np.array( [["c", "infrequent_sklearn"], ["infrequent_sklearn", 5]], dtype=object ) assert_array_equal(expected_inv, X_inv) @pytest.mark.parametrize("kwargs", [{"min_frequency": 21, "max_categories": 1}]) def test_ohe_infrequent_one_level_errors(kwargs): """All user provided categories are infrequent.""" X_train = np.array([["a"] * 5 + ["b"] * 20 + ["c"] * 10 + ["d"] * 2]).T ohe = OneHotEncoder( handle_unknown="infrequent_if_exist", sparse_output=False, **kwargs ) ohe.fit(X_train) X_trans = ohe.transform([["a"]]) assert_allclose(X_trans, [[1]]) @pytest.mark.parametrize("kwargs", [{"min_frequency": 2, "max_categories": 3}]) def test_ohe_infrequent_user_cats_unknown_training_errors(kwargs): """All user provided categories are infrequent.""" X_train = np.array([["e"] * 3], dtype=object).T ohe = OneHotEncoder( categories=[["c", "d", "a", "b"]], sparse_output=False, handle_unknown="infrequent_if_exist", **kwargs, ).fit(X_train) X_trans = ohe.transform([["a"], ["e"]]) assert_allclose(X_trans, [[1], [1]]) # deliberately omit 'OS' as an invalid combo @pytest.mark.parametrize( "input_dtype, category_dtype", ["OO", "OU", "UO", "UU", "SO", "SU", "SS"] ) @pytest.mark.parametrize("array_type", ["list", "array", "dataframe"]) def test_encoders_string_categories(input_dtype, category_dtype, array_type): """Check that encoding work with object, unicode, and byte string dtypes. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/15616 https://github.com/scikit-learn/scikit-learn/issues/15726 https://github.com/scikit-learn/scikit-learn/issues/19677 """ X = np.array([["b"], ["a"]], dtype=input_dtype) categories = [np.array(["b", "a"], dtype=category_dtype)] ohe = OneHotEncoder(categories=categories, sparse_output=False).fit(X) X_test = _convert_container( [["a"], ["a"], ["b"], ["a"]], array_type, dtype=input_dtype ) X_trans = ohe.transform(X_test) expected = np.array([[0, 1], [0, 1], [1, 0], [0, 1]]) assert_allclose(X_trans, expected) oe = OrdinalEncoder(categories=categories).fit(X) X_trans = oe.transform(X_test) expected = np.array([[1], [1], [0], [1]]) assert_array_equal(X_trans, expected) def test_mixed_string_bytes_categoricals(): """Check that this mixture of predefined categories and X raises an error. Categories defined as bytes can not easily be compared to data that is a string. """ # data as unicode X = np.array([["b"], ["a"]], dtype="U") # predefined categories as bytes categories = [np.array(["b", "a"], dtype="S")] ohe = OneHotEncoder(categories=categories, sparse_output=False) msg = re.escape( "In column 0, the predefined categories have type 'bytes' which is incompatible" " with values of type 'str_'." ) with pytest.raises(ValueError, match=msg): ohe.fit(X) @pytest.mark.parametrize("missing_value", [np.nan, None]) def test_ohe_missing_values_get_feature_names(missing_value): # encoder with missing values with object dtypes X = np.array([["a", "b", missing_value, "a", missing_value]], dtype=object).T ohe = OneHotEncoder(sparse_output=False, handle_unknown="ignore").fit(X) names = ohe.get_feature_names_out() assert_array_equal(names, ["x0_a", "x0_b", f"x0_{missing_value}"]) def test_ohe_missing_value_support_pandas(): # check support for pandas with mixed dtypes and missing values pd = pytest.importorskip("pandas") df = pd.DataFrame( { "col1": ["dog", "cat", None, "cat"], "col2": np.array([3, 0, 4, np.nan], dtype=float), }, columns=["col1", "col2"], ) expected_df_trans = np.array( [ [0, 1, 0, 0, 1, 0, 0], [1, 0, 0, 1, 0, 0, 0], [0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 0, 1], ] ) Xtr = check_categorical_onehot(df) assert_allclose(Xtr, expected_df_trans) @pytest.mark.parametrize("handle_unknown", ["infrequent_if_exist", "ignore"]) @pytest.mark.parametrize("pd_nan_type", ["pd.NA", "np.nan"]) def test_ohe_missing_value_support_pandas_categorical(pd_nan_type, handle_unknown): # checks pandas dataframe with categorical features pd = pytest.importorskip("pandas") pd_missing_value = pd.NA if pd_nan_type == "pd.NA" else np.nan df = pd.DataFrame( { "col1": pd.Series(["c", "a", pd_missing_value, "b", "a"], dtype="category"), } ) expected_df_trans = np.array( [ [0, 0, 1, 0], [1, 0, 0, 0], [0, 0, 0, 1], [0, 1, 0, 0], [1, 0, 0, 0], ] ) ohe = OneHotEncoder(sparse_output=False, handle_unknown=handle_unknown) df_trans = ohe.fit_transform(df) assert_allclose(expected_df_trans, df_trans) assert len(ohe.categories_) == 1 assert_array_equal(ohe.categories_[0][:-1], ["a", "b", "c"]) assert np.isnan(ohe.categories_[0][-1]) @pytest.mark.parametrize("handle_unknown", ["ignore", "infrequent_if_exist"]) def test_ohe_drop_first_handle_unknown_ignore_warns(handle_unknown): """Check drop='first' and handle_unknown='ignore'/'infrequent_if_exist' during transform.""" X = [["a", 0], ["b", 2], ["b", 1]] ohe = OneHotEncoder( drop="first", sparse_output=False, handle_unknown=handle_unknown ) X_trans = ohe.fit_transform(X) X_expected = np.array( [ [0, 0, 0], [1, 0, 1], [1, 1, 0], ] ) assert_allclose(X_trans, X_expected) # Both categories are unknown X_test = [["c", 3]] X_expected = np.array([[0, 0, 0]]) warn_msg = ( r"Found unknown categories in columns \[0, 1\] during " "transform. These unknown categories will be encoded as all " "zeros" ) with pytest.warns(UserWarning, match=warn_msg): X_trans = ohe.transform(X_test) assert_allclose(X_trans, X_expected) # inverse_transform maps to None X_inv = ohe.inverse_transform(X_expected) assert_array_equal(X_inv, np.array([["a", 0]], dtype=object)) @pytest.mark.parametrize("handle_unknown", ["ignore", "infrequent_if_exist"]) def test_ohe_drop_if_binary_handle_unknown_ignore_warns(handle_unknown): """Check drop='if_binary' and handle_unknown='ignore' during transform.""" X = [["a", 0], ["b", 2], ["b", 1]] ohe = OneHotEncoder( drop="if_binary", sparse_output=False, handle_unknown=handle_unknown ) X_trans = ohe.fit_transform(X) X_expected = np.array( [ [0, 1, 0, 0], [1, 0, 0, 1], [1, 0, 1, 0], ] ) assert_allclose(X_trans, X_expected) # Both categories are unknown X_test = [["c", 3]] X_expected = np.array([[0, 0, 0, 0]]) warn_msg = ( r"Found unknown categories in columns \[0, 1\] during " "transform. These unknown categories will be encoded as all " "zeros" ) with pytest.warns(UserWarning, match=warn_msg): X_trans = ohe.transform(X_test) assert_allclose(X_trans, X_expected) # inverse_transform maps to None X_inv = ohe.inverse_transform(X_expected) assert_array_equal(X_inv, np.array([["a", None]], dtype=object)) @pytest.mark.parametrize("handle_unknown", ["ignore", "infrequent_if_exist"]) def test_ohe_drop_first_explicit_categories(handle_unknown): """Check drop='first' and handle_unknown='ignore'/'infrequent_if_exist' during fit with categories passed in.""" X = [["a", 0], ["b", 2], ["b", 1]] ohe = OneHotEncoder( drop="first", sparse_output=False, handle_unknown=handle_unknown, categories=[["b", "a"], [1, 2]], ) ohe.fit(X) X_test = [["c", 1]] X_expected = np.array([[0, 0]]) warn_msg = ( r"Found unknown categories in columns \[0\] during transform. " r"These unknown categories will be encoded as all zeros" ) with pytest.warns(UserWarning, match=warn_msg): X_trans = ohe.transform(X_test) assert_allclose(X_trans, X_expected) def test_ohe_more_informative_error_message(): """Raise informative error message when pandas output and sparse_output=True.""" pd = pytest.importorskip("pandas") df = pd.DataFrame({"a": [1, 2, 3], "b": ["z", "b", "b"]}, columns=["a", "b"]) ohe = OneHotEncoder(sparse_output=True) ohe.set_output(transform="pandas") msg = ( "Pandas output does not support sparse data. Set " "sparse_output=False to output pandas dataframes or disable Pandas output" ) with pytest.raises(ValueError, match=msg): ohe.fit_transform(df) ohe.fit(df) with pytest.raises(ValueError, match=msg): ohe.transform(df) def test_ordinal_encoder_passthrough_missing_values_float_errors_dtype(): """Test ordinal encoder with nan passthrough fails when dtype=np.int32.""" X = np.array([[np.nan, 3.0, 1.0, 3.0]]).T oe = OrdinalEncoder(dtype=np.int32) msg = ( r"There are missing values in features \[0\]. For OrdinalEncoder " f"to encode missing values with dtype: {np.int32}" ) with pytest.raises(ValueError, match=msg): oe.fit(X) @pytest.mark.parametrize("encoded_missing_value", [np.nan, -2]) def test_ordinal_encoder_passthrough_missing_values_float(encoded_missing_value): """Test ordinal encoder with nan on float dtypes.""" X = np.array([[np.nan, 3.0, 1.0, 3.0]], dtype=np.float64).T oe = OrdinalEncoder(encoded_missing_value=encoded_missing_value).fit(X) assert len(oe.categories_) == 1 assert_allclose(oe.categories_[0], [1.0, 3.0, np.nan]) X_trans = oe.transform(X) assert_allclose(X_trans, [[encoded_missing_value], [1.0], [0.0], [1.0]]) X_inverse = oe.inverse_transform(X_trans) assert_allclose(X_inverse, X) @pytest.mark.parametrize("pd_nan_type", ["pd.NA", "np.nan"]) @pytest.mark.parametrize("encoded_missing_value", [np.nan, -2]) def test_ordinal_encoder_missing_value_support_pandas_categorical( pd_nan_type, encoded_missing_value ): """Check ordinal encoder is compatible with pandas.""" # checks pandas dataframe with categorical features pd = pytest.importorskip("pandas") pd_missing_value = pd.NA if pd_nan_type == "pd.NA" else np.nan df = pd.DataFrame( { "col1": pd.Series(["c", "a", pd_missing_value, "b", "a"], dtype="category"), } ) oe = OrdinalEncoder(encoded_missing_value=encoded_missing_value).fit(df) assert len(oe.categories_) == 1 assert_array_equal(oe.categories_[0][:3], ["a", "b", "c"]) assert np.isnan(oe.categories_[0][-1]) df_trans = oe.transform(df) assert_allclose(df_trans, [[2.0], [0.0], [encoded_missing_value], [1.0], [0.0]]) X_inverse = oe.inverse_transform(df_trans) assert X_inverse.shape == (5, 1) assert_array_equal(X_inverse[:2, 0], ["c", "a"]) assert_array_equal(X_inverse[3:, 0], ["b", "a"]) assert np.isnan(X_inverse[2, 0]) @pytest.mark.parametrize( "X, X2, cats, cat_dtype", [ ( ( np.array([["a", np.nan]], dtype=object).T, np.array([["a", "b"]], dtype=object).T, [np.array(["a", "d", np.nan], dtype=object)], np.object_, ) ), ( ( np.array([["a", np.nan]], dtype=object).T, np.array([["a", "b"]], dtype=object).T, [np.array(["a", "d", np.nan], dtype=object)], np.object_, ) ), ( ( np.array([[2.0, np.nan]], dtype=np.float64).T, np.array([[3.0]], dtype=np.float64).T, [np.array([2.0, 4.0, np.nan])], np.float64, ) ), ], ids=[ "object-None-missing-value", "object-nan-missing_value", "numeric-missing-value", ], ) def test_ordinal_encoder_specified_categories_missing_passthrough( X, X2, cats, cat_dtype ): """Test ordinal encoder for specified categories.""" oe = OrdinalEncoder(categories=cats) exp = np.array([[0.0], [np.nan]]) assert_array_equal(oe.fit_transform(X), exp) # manually specified categories should have same dtype as # the data when coerced from lists assert oe.categories_[0].dtype == cat_dtype # when specifying categories manually, unknown categories should already # raise when fitting oe = OrdinalEncoder(categories=cats) with pytest.raises(ValueError, match="Found unknown categories"): oe.fit(X2) @pytest.mark.parametrize("Encoder", [OneHotEncoder, OrdinalEncoder]) def test_encoder_duplicate_specified_categories(Encoder): """Test encoder for specified categories have duplicate values. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/27088 """ cats = [np.array(["a", "b", "a"], dtype=object)] enc = Encoder(categories=cats) X = np.array([["a", "b"]], dtype=object).T with pytest.raises( ValueError, match="the predefined categories contain duplicate elements." ): enc.fit(X) @pytest.mark.parametrize( "X, expected_X_trans, X_test", [ ( np.array([[1.0, np.nan, 3.0]]).T, np.array([[0.0, np.nan, 1.0]]).T, np.array([[4.0]]), ), ( np.array([[1.0, 4.0, 3.0]]).T, np.array([[0.0, 2.0, 1.0]]).T, np.array([[np.nan]]), ), ( np.array([["c", np.nan, "b"]], dtype=object).T, np.array([[1.0, np.nan, 0.0]]).T, np.array([["d"]], dtype=object), ), ( np.array([["c", "a", "b"]], dtype=object).T, np.array([[2.0, 0.0, 1.0]]).T, np.array([[np.nan]], dtype=object), ), ], ) def test_ordinal_encoder_handle_missing_and_unknown(X, expected_X_trans, X_test): """Test the interaction between missing values and handle_unknown""" oe = OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=-1) X_trans = oe.fit_transform(X) assert_allclose(X_trans, expected_X_trans) assert_allclose(oe.transform(X_test), [[-1.0]]) @pytest.mark.parametrize("csr_container", CSR_CONTAINERS) def test_ordinal_encoder_sparse(csr_container): """Check that we raise proper error with sparse input in OrdinalEncoder. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/19878 """ X = np.array([[3, 2, 1], [0, 1, 1]]) X_sparse = csr_container(X) encoder = OrdinalEncoder() err_msg = "Sparse data was passed, but dense data is required" with pytest.raises(TypeError, match=err_msg): encoder.fit(X_sparse) with pytest.raises(TypeError, match=err_msg): encoder.fit_transform(X_sparse) X_trans = encoder.fit_transform(X) X_trans_sparse = csr_container(X_trans) with pytest.raises(TypeError, match=err_msg): encoder.inverse_transform(X_trans_sparse) def test_ordinal_encoder_fit_with_unseen_category(): """Check OrdinalEncoder.fit works with unseen category when `handle_unknown="use_encoded_value"`. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/19872 """ X = np.array([0, 0, 1, 0, 2, 5])[:, np.newaxis] oe = OrdinalEncoder( categories=[[-1, 0, 1]], handle_unknown="use_encoded_value", unknown_value=-999 ) oe.fit(X) oe = OrdinalEncoder(categories=[[-1, 0, 1]], handle_unknown="error") with pytest.raises(ValueError, match="Found unknown categories"): oe.fit(X) @pytest.mark.parametrize( "X_train", [ [["AA", "B"]], np.array([["AA", "B"]], dtype="O"), np.array([["AA", "B"]], dtype="U"), ], ) @pytest.mark.parametrize( "X_test", [ [["A", "B"]], np.array([["A", "B"]], dtype="O"), np.array([["A", "B"]], dtype="U"), ], ) def test_ordinal_encoder_handle_unknown_string_dtypes(X_train, X_test): """Checks that `OrdinalEncoder` transforms string dtypes. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/19872 """ enc = OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=-9) enc.fit(X_train) X_trans = enc.transform(X_test) assert_allclose(X_trans, [[-9, 0]]) def test_ordinal_encoder_python_integer(): """Check that `OrdinalEncoder` accepts Python integers that are potentially larger than 64 bits. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/20721 """ X = np.array( [ 44253463435747313673, 9867966753463435747313673, 44253462342215747313673, 442534634357764313673, ] ).reshape(-1, 1) encoder = OrdinalEncoder().fit(X) assert_array_equal(encoder.categories_, np.sort(X, axis=0).T) X_trans = encoder.transform(X) assert_array_equal(X_trans, [[0], [3], [2], [1]]) def test_ordinal_encoder_features_names_out_pandas(): """Check feature names out is same as the input.""" pd = pytest.importorskip("pandas") names = ["b", "c", "a"] X = pd.DataFrame([[1, 2, 3]], columns=names) enc = OrdinalEncoder().fit(X) feature_names_out = enc.get_feature_names_out() assert_array_equal(names, feature_names_out) def test_ordinal_encoder_unknown_missing_interaction(): """Check interactions between encode_unknown and missing value encoding.""" X = np.array([["a"], ["b"], [np.nan]], dtype=object) oe = OrdinalEncoder( handle_unknown="use_encoded_value", unknown_value=np.nan, encoded_missing_value=-3, ).fit(X) X_trans = oe.transform(X) assert_allclose(X_trans, [[0], [1], [-3]]) # "c" is unknown and is mapped to np.nan # "None" is a missing value and is set to -3 X_test = np.array([["c"], [np.nan]], dtype=object) X_test_trans = oe.transform(X_test) assert_allclose(X_test_trans, [[np.nan], [-3]]) # Non-regression test for #24082 X_roundtrip = oe.inverse_transform(X_test_trans) # np.nan is unknown so it maps to None assert X_roundtrip[0][0] is None # -3 is the encoded missing value so it maps back to nan assert np.isnan(X_roundtrip[1][0]) @pytest.mark.parametrize("with_pandas", [True, False]) def test_ordinal_encoder_encoded_missing_value_error(with_pandas): """Check OrdinalEncoder errors when encoded_missing_value is used by an known category.""" X = np.array([["a", "dog"], ["b", "cat"], ["c", np.nan]], dtype=object) # The 0-th feature has no missing values so it is not included in the list of # features error_msg = ( r"encoded_missing_value \(1\) is already used to encode a known category " r"in features: " ) if with_pandas: pd = pytest.importorskip("pandas") X = pd.DataFrame(X, columns=["letter", "pet"]) error_msg = error_msg + r"\['pet'\]" else: error_msg = error_msg + r"\[1\]" oe = OrdinalEncoder(encoded_missing_value=1) with pytest.raises(ValueError, match=error_msg): oe.fit(X) @pytest.mark.parametrize( "X_train, X_test_trans_expected, X_roundtrip_expected", [ ( # missing value is not in training set # inverse transform will considering encoded nan as unknown np.array([["a"], ["1"]], dtype=object), [[0], [np.nan], [np.nan]], np.asarray([["1"], [None], [None]], dtype=object), ), ( # missing value in training set, # inverse transform will considering encoded nan as missing np.array([[np.nan], ["1"], ["a"]], dtype=object), [[0], [np.nan], [np.nan]], np.asarray([["1"], [np.nan], [np.nan]], dtype=object), ), ], ) def test_ordinal_encoder_unknown_missing_interaction_both_nan( X_train, X_test_trans_expected, X_roundtrip_expected ): """Check transform when unknown_value and encoded_missing_value is nan. Non-regression test for #24082. """ oe = OrdinalEncoder( handle_unknown="use_encoded_value", unknown_value=np.nan, encoded_missing_value=np.nan, ).fit(X_train) X_test = np.array([["1"], [np.nan], ["b"]]) X_test_trans = oe.transform(X_test) # both nan and unknown are encoded as nan assert_allclose(X_test_trans, X_test_trans_expected) X_roundtrip = oe.inverse_transform(X_test_trans) n_samples = X_roundtrip_expected.shape[0] for i in range(n_samples): expected_val = X_roundtrip_expected[i, 0] val = X_roundtrip[i, 0] if expected_val is None: assert val is None elif is_scalar_nan(expected_val): assert np.isnan(val) else: assert val == expected_val def test_one_hot_encoder_set_output(): """Check OneHotEncoder works with set_output.""" pd = pytest.importorskip("pandas") X_df = pd.DataFrame({"A": ["a", "b"], "B": [1, 2]}) ohe = OneHotEncoder() ohe.set_output(transform="pandas") match = "Pandas output does not support sparse data. Set sparse_output=False" with pytest.raises(ValueError, match=match): ohe.fit_transform(X_df) ohe_default = OneHotEncoder(sparse_output=False).set_output(transform="default") ohe_pandas = OneHotEncoder(sparse_output=False).set_output(transform="pandas") X_default = ohe_default.fit_transform(X_df) X_pandas = ohe_pandas.fit_transform(X_df) assert_allclose(X_pandas.to_numpy(), X_default) assert_array_equal(ohe_pandas.get_feature_names_out(), X_pandas.columns) def test_ordinal_set_output(): """Check OrdinalEncoder works with set_output.""" pd = pytest.importorskip("pandas") X_df = pd.DataFrame({"A": ["a", "b"], "B": [1, 2]}) ord_default = OrdinalEncoder().set_output(transform="default") ord_pandas = OrdinalEncoder().set_output(transform="pandas") X_default = ord_default.fit_transform(X_df) X_pandas = ord_pandas.fit_transform(X_df) assert_allclose(X_pandas.to_numpy(), X_default) assert_array_equal(ord_pandas.get_feature_names_out(), X_pandas.columns) def test_predefined_categories_dtype(): """Check that the categories_ dtype is `object` for string categories Regression test for gh-25171. """ categories = [["as", "mmas", "eas", "ras", "acs"], ["1", "2"]] enc = OneHotEncoder(categories=categories) enc.fit([["as", "1"]]) assert len(categories) == len(enc.categories_) for n, cat in enumerate(enc.categories_): assert cat.dtype == object assert_array_equal(categories[n], cat) def test_ordinal_encoder_missing_unknown_encoding_max(): """Check missing value or unknown encoding can equal the cardinality.""" X = np.array([["dog"], ["cat"], [np.nan]], dtype=object) X_trans = OrdinalEncoder(encoded_missing_value=2).fit_transform(X) assert_allclose(X_trans, [[1], [0], [2]]) enc = OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=2).fit(X) X_test = np.array([["snake"]]) X_trans = enc.transform(X_test) assert_allclose(X_trans, [[2]]) def test_drop_idx_infrequent_categories(): """Check drop_idx is defined correctly with infrequent categories. Non-regression test for gh-25550. """ X = np.array( [["a"] * 2 + ["b"] * 4 + ["c"] * 4 + ["d"] * 4 + ["e"] * 4], dtype=object ).T ohe = OneHotEncoder(min_frequency=4, sparse_output=False, drop="first").fit(X) assert_array_equal( ohe.get_feature_names_out(), ["x0_c", "x0_d", "x0_e", "x0_infrequent_sklearn"] ) assert ohe.categories_[0][ohe.drop_idx_[0]] == "b" X = np.array([["a"] * 2 + ["b"] * 2 + ["c"] * 10], dtype=object).T ohe = OneHotEncoder(min_frequency=4, sparse_output=False, drop="if_binary").fit(X) assert_array_equal(ohe.get_feature_names_out(), ["x0_infrequent_sklearn"]) assert ohe.categories_[0][ohe.drop_idx_[0]] == "c" X = np.array( [["a"] * 2 + ["b"] * 4 + ["c"] * 4 + ["d"] * 4 + ["e"] * 4], dtype=object ).T ohe = OneHotEncoder(min_frequency=4, sparse_output=False, drop=["d"]).fit(X) assert_array_equal( ohe.get_feature_names_out(), ["x0_b", "x0_c", "x0_e", "x0_infrequent_sklearn"] ) assert ohe.categories_[0][ohe.drop_idx_[0]] == "d" ohe = OneHotEncoder(min_frequency=4, sparse_output=False, drop=None).fit(X) assert_array_equal( ohe.get_feature_names_out(), ["x0_b", "x0_c", "x0_d", "x0_e", "x0_infrequent_sklearn"], ) assert ohe.drop_idx_ is None @pytest.mark.parametrize( "kwargs", [ {"max_categories": 3}, {"min_frequency": 6}, {"min_frequency": 9}, {"min_frequency": 0.24}, {"min_frequency": 0.16}, {"max_categories": 3, "min_frequency": 8}, {"max_categories": 4, "min_frequency": 6}, ], ) def test_ordinal_encoder_infrequent_three_levels(kwargs): """Test parameters for grouping 'a', and 'd' into the infrequent category.""" X_train = np.array([["a"] * 5 + ["b"] * 20 + ["c"] * 10 + ["d"] * 3]).T ordinal = OrdinalEncoder( handle_unknown="use_encoded_value", unknown_value=-1, **kwargs ).fit(X_train) assert_array_equal(ordinal.categories_, [["a", "b", "c", "d"]]) assert_array_equal(ordinal.infrequent_categories_, [["a", "d"]]) X_test = [["a"], ["b"], ["c"], ["d"], ["z"]] expected_trans = [[2], [0], [1], [2], [-1]] X_trans = ordinal.transform(X_test) assert_allclose(X_trans, expected_trans) X_inverse = ordinal.inverse_transform(X_trans) expected_inverse = [ ["infrequent_sklearn"], ["b"], ["c"], ["infrequent_sklearn"], [None], ] assert_array_equal(X_inverse, expected_inverse) def test_ordinal_encoder_infrequent_three_levels_user_cats(): """Test that the order of the categories provided by a user is respected. In this case 'c' is encoded as the first category and 'b' is encoded as the second one. """ X_train = np.array( [["a"] * 5 + ["b"] * 20 + ["c"] * 10 + ["d"] * 3], dtype=object ).T ordinal = OrdinalEncoder( categories=[["c", "d", "b", "a"]], max_categories=3, handle_unknown="use_encoded_value", unknown_value=-1, ).fit(X_train) assert_array_equal(ordinal.categories_, [["c", "d", "b", "a"]]) assert_array_equal(ordinal.infrequent_categories_, [["d", "a"]]) X_test = [["a"], ["b"], ["c"], ["d"], ["z"]] expected_trans = [[2], [1], [0], [2], [-1]] X_trans = ordinal.transform(X_test) assert_allclose(X_trans, expected_trans) X_inverse = ordinal.inverse_transform(X_trans) expected_inverse = [ ["infrequent_sklearn"], ["b"], ["c"], ["infrequent_sklearn"], [None], ] assert_array_equal(X_inverse, expected_inverse) def test_ordinal_encoder_infrequent_mixed(): """Test when feature 0 has infrequent categories and feature 1 does not.""" X = np.column_stack(([0, 1, 3, 3, 3, 3, 2, 0, 3], [0, 0, 0, 0, 1, 1, 1, 1, 1])) ordinal = OrdinalEncoder(max_categories=3).fit(X) assert_array_equal(ordinal.infrequent_categories_[0], [1, 2]) assert ordinal.infrequent_categories_[1] is None X_test = [[3, 0], [1, 1]] expected_trans = [[1, 0], [2, 1]] X_trans = ordinal.transform(X_test) assert_allclose(X_trans, expected_trans) X_inverse = ordinal.inverse_transform(X_trans) expected_inverse = np.array([[3, 0], ["infrequent_sklearn", 1]], dtype=object) assert_array_equal(X_inverse, expected_inverse) def test_ordinal_encoder_infrequent_multiple_categories_dtypes(): """Test infrequent categories with a pandas DataFrame with multiple dtypes.""" pd = pytest.importorskip("pandas") categorical_dtype = pd.CategoricalDtype(["bird", "cat", "dog", "snake"]) X = pd.DataFrame( { "str": ["a", "f", "c", "f", "f", "a", "c", "b", "b"], "int": [5, 3, 0, 10, 10, 12, 0, 3, 5], "categorical": pd.Series( ["dog"] * 4 + ["cat"] * 3 + ["snake"] + ["bird"], dtype=categorical_dtype, ), }, columns=["str", "int", "categorical"], ) ordinal = OrdinalEncoder(max_categories=3).fit(X) # X[:, 0] 'a', 'b', 'c' have the same frequency. 'a' and 'b' will be # considered infrequent because they appear first when sorted # X[:, 1] 0, 3, 5, 10 has frequency 2 and 12 has frequency 1. # 0, 3, 12 will be considered infrequent because they appear first when # sorted. # X[:, 2] "snake" and "bird" or infrequent assert_array_equal(ordinal.infrequent_categories_[0], ["a", "b"]) assert_array_equal(ordinal.infrequent_categories_[1], [0, 3, 12]) assert_array_equal(ordinal.infrequent_categories_[2], ["bird", "snake"]) X_test = pd.DataFrame( { "str": ["a", "b", "f", "c"], "int": [12, 0, 10, 5], "categorical": pd.Series( ["cat"] + ["snake"] + ["bird"] + ["dog"], dtype=categorical_dtype, ), }, columns=["str", "int", "categorical"], ) expected_trans = [[2, 2, 0], [2, 2, 2], [1, 1, 2], [0, 0, 1]] X_trans = ordinal.transform(X_test) assert_allclose(X_trans, expected_trans) def test_ordinal_encoder_infrequent_custom_mapping(): """Check behavior of unknown_value and encoded_missing_value with infrequent.""" X_train = np.array( [["a"] * 5 + ["b"] * 20 + ["c"] * 10 + ["d"] * 3 + [np.nan]], dtype=object ).T ordinal = OrdinalEncoder( handle_unknown="use_encoded_value", unknown_value=2, max_categories=2, encoded_missing_value=3, ).fit(X_train) assert_array_equal(ordinal.infrequent_categories_, [["a", "c", "d"]]) X_test = np.array([["a"], ["b"], ["c"], ["d"], ["e"], [np.nan]], dtype=object) expected_trans = [[1], [0], [1], [1], [2], [3]] X_trans = ordinal.transform(X_test) assert_allclose(X_trans, expected_trans) @pytest.mark.parametrize( "kwargs", [ {"max_categories": 6}, {"min_frequency": 2}, ], ) def test_ordinal_encoder_all_frequent(kwargs): """All categories are considered frequent have same encoding as default encoder.""" X_train = np.array( [["a"] * 5 + ["b"] * 20 + ["c"] * 10 + ["d"] * 3], dtype=object ).T adjusted_encoder = OrdinalEncoder( **kwargs, handle_unknown="use_encoded_value", unknown_value=-1 ).fit(X_train) default_encoder = OrdinalEncoder( handle_unknown="use_encoded_value", unknown_value=-1 ).fit(X_train) X_test = [["a"], ["b"], ["c"], ["d"], ["e"]] assert_allclose( adjusted_encoder.transform(X_test), default_encoder.transform(X_test) ) @pytest.mark.parametrize( "kwargs", [ {"max_categories": 1}, {"min_frequency": 100}, ], ) def test_ordinal_encoder_all_infrequent(kwargs): """When all categories are infrequent, they are all encoded as zero.""" X_train = np.array( [["a"] * 5 + ["b"] * 20 + ["c"] * 10 + ["d"] * 3], dtype=object ).T encoder = OrdinalEncoder( **kwargs, handle_unknown="use_encoded_value", unknown_value=-1 ).fit(X_train) X_test = [["a"], ["b"], ["c"], ["d"], ["e"]] assert_allclose(encoder.transform(X_test), [[0], [0], [0], [0], [-1]]) def test_ordinal_encoder_missing_appears_frequent(): """Check behavior when missing value appears frequently.""" X = np.array( [[np.nan] * 20 + ["dog"] * 10 + ["cat"] * 5 + ["snake"] + ["deer"]], dtype=object, ).T ordinal = OrdinalEncoder(max_categories=3).fit(X) X_test = np.array([["snake", "cat", "dog", np.nan]], dtype=object).T X_trans = ordinal.transform(X_test) assert_allclose(X_trans, [[2], [0], [1], [np.nan]]) def test_ordinal_encoder_missing_appears_infrequent(): """Check behavior when missing value appears infrequently.""" # feature 0 has infrequent categories # feature 1 has no infrequent categories X = np.array( [ [np.nan] + ["dog"] * 10 + ["cat"] * 5 + ["snake"] + ["deer"], ["red"] * 9 + ["green"] * 9, ], dtype=object, ).T ordinal = OrdinalEncoder(min_frequency=4).fit(X) X_test = np.array( [ ["snake", "red"], ["deer", "green"], [np.nan, "green"], ["dog", "green"], ["cat", "red"], ], dtype=object, ) X_trans = ordinal.transform(X_test) assert_allclose(X_trans, [[2, 1], [2, 0], [np.nan, 0], [1, 0], [0, 1]]) @pytest.mark.parametrize("Encoder", [OneHotEncoder, OrdinalEncoder]) def test_encoder_not_fitted(Encoder): """Check that we raise a `NotFittedError` by calling transform before fit with the encoders. One could expect that the passing the `categories` argument to the encoder would make it stateless. However, `fit` is making a couple of check, such as the position of `np.nan`. """ X = np.array([["A"], ["B"], ["C"]], dtype=object) encoder = Encoder(categories=[["A", "B", "C"]]) with pytest.raises(NotFittedError): encoder.transform(X)