from sympy.combinatorics.prufer import Prufer from sympy.testing.pytest import raises def test_prufer(): # number of nodes is optional assert Prufer([[0, 1], [0, 2], [0, 3], [0, 4]], 5).nodes == 5 assert Prufer([[0, 1], [0, 2], [0, 3], [0, 4]]).nodes == 5 a = Prufer([[0, 1], [0, 2], [0, 3], [0, 4]]) assert a.rank == 0 assert a.nodes == 5 assert a.prufer_repr == [0, 0, 0] a = Prufer([[2, 4], [1, 4], [1, 3], [0, 5], [0, 4]]) assert a.rank == 924 assert a.nodes == 6 assert a.tree_repr == [[2, 4], [1, 4], [1, 3], [0, 5], [0, 4]] assert a.prufer_repr == [4, 1, 4, 0] assert Prufer.edges([0, 1, 2, 3], [1, 4, 5], [1, 4, 6]) == \ ([[0, 1], [1, 2], [1, 4], [2, 3], [4, 5], [4, 6]], 7) assert Prufer([0]*4).size == Prufer([6]*4).size == 1296 # accept iterables but convert to list of lists tree = [(0, 1), (1, 5), (0, 3), (0, 2), (2, 6), (4, 7), (2, 4)] tree_lists = [list(t) for t in tree] assert Prufer(tree).tree_repr == tree_lists assert sorted(Prufer(set(tree)).tree_repr) == sorted(tree_lists) raises(ValueError, lambda: Prufer([[1, 2], [3, 4]])) # 0 is missing raises(ValueError, lambda: Prufer([[2, 3], [3, 4]])) # 0, 1 are missing assert Prufer(*Prufer.edges([1, 2], [3, 4])).prufer_repr == [1, 3] raises(ValueError, lambda: Prufer.edges( [1, 3], [3, 4])) # a broken tree but edges doesn't care raises(ValueError, lambda: Prufer.edges([1, 2], [5, 6])) raises(ValueError, lambda: Prufer([[]])) a = Prufer([[0, 1], [0, 2], [0, 3]]) b = a.next() assert b.tree_repr == [[0, 2], [0, 1], [1, 3]] assert b.rank == 1 def test_round_trip(): def doit(t, b): e, n = Prufer.edges(*t) t = Prufer(e, n) a = sorted(t.tree_repr) b = [i - 1 for i in b] assert t.prufer_repr == b assert sorted(Prufer(b).tree_repr) == a assert Prufer.unrank(t.rank, n).prufer_repr == b doit([[1, 2]], []) doit([[2, 1, 3]], [1]) doit([[1, 3, 2]], [3]) doit([[1, 2, 3]], [2]) doit([[2, 1, 4], [1, 3]], [1, 1]) doit([[3, 2, 1, 4]], [2, 1]) doit([[3, 2, 1], [2, 4]], [2, 2]) doit([[1, 3, 2, 4]], [3, 2]) doit([[1, 4, 2, 3]], [4, 2]) doit([[3, 1, 4, 2]], [4, 1]) doit([[4, 2, 1, 3]], [1, 2]) doit([[1, 2, 4, 3]], [2, 4]) doit([[1, 3, 4, 2]], [3, 4]) doit([[2, 4, 1], [4, 3]], [4, 4]) doit([[1, 2, 3, 4]], [2, 3]) doit([[2, 3, 1], [3, 4]], [3, 3]) doit([[1, 4, 3, 2]], [4, 3]) doit([[2, 1, 4, 3]], [1, 4]) doit([[2, 1, 3, 4]], [1, 3]) doit([[6, 2, 1, 4], [1, 3, 5, 8], [3, 7]], [1, 2, 1, 3, 3, 5])