r"""A module for special angle forumlas for trigonometric functions TODO ==== This module should be developed in the future to contain direct squrae root representation of .. math F(\frac{n}{m} \pi) for every - $m \in \{ 3, 5, 17, 257, 65537 \}$ - $n \in \mathbb{N}$, $0 \le n < m$ - $F \in \{\sin, \cos, \tan, \csc, \sec, \cot\}$ Without multi-step rewrites (e.g. $\tan \to \cos/\sin \to \cos/\sqrt \to \ sqrt$) or using chebyshev identities (e.g. $\cos \to \cos + \cos^2 + \cdots \to \sqrt{} + \sqrt{}^2 + \cdots $), which are trivial to implement in sympy, and had used to give overly complicated expressions. The reference can be found below, if anyone may need help implementing them. References ========== .. [*] Gottlieb, Christian. (1999). The Simple and straightforward construction of the regular 257-gon. The Mathematical Intelligencer. 21. 31-37. 10.1007/BF03024829. .. [*] https://resources.wolframcloud.com/FunctionRepository/resources/Cos2PiOverFermatPrime """ from __future__ import annotations from typing import Callable from functools import reduce from sympy.core.expr import Expr from sympy.core.singleton import S from sympy.core.numbers import igcdex, Integer from sympy.functions.elementary.miscellaneous import sqrt from sympy.core.cache import cacheit def migcdex(*x: int) -> tuple[tuple[int, ...], int]: r"""Compute extended gcd for multiple integers. Explanation =========== Given the integers $x_1, \cdots, x_n$ and an extended gcd for multiple arguments are defined as a solution $(y_1, \cdots, y_n), g$ for the diophantine equation $x_1 y_1 + \cdots + x_n y_n = g$ such that $g = \gcd(x_1, \cdots, x_n)$. Examples ======== >>> from sympy.functions.elementary._trigonometric_special import migcdex >>> migcdex() ((), 0) >>> migcdex(4) ((1,), 4) >>> migcdex(4, 6) ((-1, 1), 2) >>> migcdex(6, 10, 15) ((1, 1, -1), 1) """ if not x: return (), 0 if len(x) == 1: return (1,), x[0] if len(x) == 2: u, v, h = igcdex(x[0], x[1]) return (u, v), h y, g = migcdex(*x[1:]) u, v, h = igcdex(x[0], g) return (u, *(v * i for i in y)), h def ipartfrac(*denoms: int) -> tuple[int, ...]: r"""Compute the the partial fraction decomposition. Explanation =========== Given a rational number $\frac{1}{q_1 \cdots q_n}$ where all $q_1, \cdots, q_n$ are pairwise coprime, A partial fraction decomposition is defined as .. math:: \frac{1}{q_1 \cdots q_n} = \frac{p_1}{q_1} + \cdots + \frac{p_n}{q_n} And it can be derived from solving the following diophantine equation for the $p_1, \cdots, p_n$ .. math:: 1 = p_1 \prod_{i \ne 1}q_i + \cdots + p_n \prod_{i \ne n}q_i Where $q_1, \cdots, q_n$ being pairwise coprime implies $\gcd(\prod_{i \ne 1}q_i, \cdots, \prod_{i \ne n}q_i) = 1$, which guarantees the existance of the solution. It is sufficient to compute partial fraction decomposition only for numerator $1$ because partial fraction decomposition for any $\frac{n}{q_1 \cdots q_n}$ can be easily computed by multiplying the result by $n$ afterwards. Parameters ========== denoms : int The pairwise coprime integer denominators $q_i$ which defines the rational number $\frac{1}{q_1 \cdots q_n}$ Returns ======= tuple[int, ...] The list of numerators which semantically corresponds to $p_i$ of the partial fraction decomposition $\frac{1}{q_1 \cdots q_n} = \frac{p_1}{q_1} + \cdots + \frac{p_n}{q_n}$ Examples ======== >>> from sympy import Rational, Mul >>> from sympy.functions.elementary._trigonometric_special import ipartfrac >>> denoms = 2, 3, 5 >>> numers = ipartfrac(2, 3, 5) >>> numers (1, 7, -14) >>> Rational(1, Mul(*denoms)) 1/30 >>> out = 0 >>> for n, d in zip(numers, denoms): ... out += Rational(n, d) >>> out 1/30 """ if not denoms: return () def mul(x: int, y: int) -> int: return x * y denom = reduce(mul, denoms) a = [denom // x for x in denoms] h, _ = migcdex(*a) return h def fermat_coords(n: int) -> list[int] | None: """If n can be factored in terms of Fermat primes with multiplicity of each being 1, return those primes, else None """ primes = [] for p in [3, 5, 17, 257, 65537]: quotient, remainder = divmod(n, p) if remainder == 0: n = quotient primes.append(p) if n == 1: return primes return None @cacheit def cos_3() -> Expr: r"""Computes $\cos \frac{\pi}{3}$ in square roots""" return S.Half @cacheit def cos_5() -> Expr: r"""Computes $\cos \frac{\pi}{5}$ in square roots""" return (sqrt(5) + 1) / 4 @cacheit def cos_17() -> Expr: r"""Computes $\cos \frac{\pi}{17}$ in square roots""" return sqrt( (15 + sqrt(17)) / 32 + sqrt(2) * (sqrt(17 - sqrt(17)) + sqrt(sqrt(2) * (-8 * sqrt(17 + sqrt(17)) - (1 - sqrt(17)) * sqrt(17 - sqrt(17))) + 6 * sqrt(17) + 34)) / 32) @cacheit def cos_257() -> Expr: r"""Computes $\cos \frac{\pi}{257}$ in square roots References ========== .. [*] https://math.stackexchange.com/questions/516142/how-does-cos2-pi-257-look-like-in-real-radicals .. [*] https://r-knott.surrey.ac.uk/Fibonacci/simpleTrig.html """ def f1(a: Expr, b: Expr) -> tuple[Expr, Expr]: return (a + sqrt(a**2 + b)) / 2, (a - sqrt(a**2 + b)) / 2 def f2(a: Expr, b: Expr) -> Expr: return (a - sqrt(a**2 + b))/2 t1, t2 = f1(S.NegativeOne, Integer(256)) z1, z3 = f1(t1, Integer(64)) z2, z4 = f1(t2, Integer(64)) y1, y5 = f1(z1, 4*(5 + t1 + 2*z1)) y6, y2 = f1(z2, 4*(5 + t2 + 2*z2)) y3, y7 = f1(z3, 4*(5 + t1 + 2*z3)) y8, y4 = f1(z4, 4*(5 + t2 + 2*z4)) x1, x9 = f1(y1, -4*(t1 + y1 + y3 + 2*y6)) x2, x10 = f1(y2, -4*(t2 + y2 + y4 + 2*y7)) x3, x11 = f1(y3, -4*(t1 + y3 + y5 + 2*y8)) x4, x12 = f1(y4, -4*(t2 + y4 + y6 + 2*y1)) x5, x13 = f1(y5, -4*(t1 + y5 + y7 + 2*y2)) x6, x14 = f1(y6, -4*(t2 + y6 + y8 + 2*y3)) x15, x7 = f1(y7, -4*(t1 + y7 + y1 + 2*y4)) x8, x16 = f1(y8, -4*(t2 + y8 + y2 + 2*y5)) v1 = f2(x1, -4*(x1 + x2 + x3 + x6)) v2 = f2(x2, -4*(x2 + x3 + x4 + x7)) v3 = f2(x8, -4*(x8 + x9 + x10 + x13)) v4 = f2(x9, -4*(x9 + x10 + x11 + x14)) v5 = f2(x10, -4*(x10 + x11 + x12 + x15)) v6 = f2(x16, -4*(x16 + x1 + x2 + x5)) u1 = -f2(-v1, -4*(v2 + v3)) u2 = -f2(-v4, -4*(v5 + v6)) w1 = -2*f2(-u1, -4*u2) return sqrt(sqrt(2)*sqrt(w1 + 4)/8 + S.Half) def cos_table() -> dict[int, Callable[[], Expr]]: r"""Lazily evaluated table for $\cos \frac{\pi}{n}$ in square roots for $n \in \{3, 5, 17, 257, 65537\}$. Notes ===== 65537 is the only other known Fermat prime and it is nearly impossible to build in the current SymPy due to performance issues. References ========== https://r-knott.surrey.ac.uk/Fibonacci/simpleTrig.html """ return { 3: cos_3, 5: cos_5, 17: cos_17, 257: cos_257 }