from sympy.core.containers import Tuple from sympy.core.function import Derivative from sympy.core.numbers import (I, Rational, oo, pi) from sympy.core.singleton import S from sympy.core.symbol import symbols from sympy.functions.elementary.exponential import (exp, log) from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import cos from sympy.functions.special.gamma_functions import gamma from sympy.functions.special.hyper import (appellf1, hyper, meijerg) from sympy.series.order import O from sympy.abc import x, z, k from sympy.series.limits import limit from sympy.testing.pytest import raises, slow from sympy.core.random import ( random_complex_number as randcplx, verify_numerically as tn, test_derivative_numerically as td) def test_TupleParametersBase(): # test that our implementation of the chain rule works p = hyper((), (), z**2) assert p.diff(z) == p*2*z def test_hyper(): raises(TypeError, lambda: hyper(1, 2, z)) assert hyper((1, 2), (1,), z) == hyper(Tuple(1, 2), Tuple(1), z) h = hyper((1, 2), (3, 4, 5), z) assert h.ap == Tuple(1, 2) assert h.bq == Tuple(3, 4, 5) assert h.argument == z assert h.is_commutative is True # just a few checks to make sure that all arguments go where they should assert tn(hyper(Tuple(), Tuple(), z), exp(z), z) assert tn(z*hyper((1, 1), Tuple(2), -z), log(1 + z), z) # differentiation h = hyper( (randcplx(), randcplx(), randcplx()), (randcplx(), randcplx()), z) assert td(h, z) a1, a2, b1, b2, b3 = symbols('a1:3, b1:4') assert hyper((a1, a2), (b1, b2, b3), z).diff(z) == \ a1*a2/(b1*b2*b3) * hyper((a1 + 1, a2 + 1), (b1 + 1, b2 + 1, b3 + 1), z) # differentiation wrt parameters is not supported assert hyper([z], [], z).diff(z) == Derivative(hyper([z], [], z), z) # hyper is unbranched wrt parameters from sympy.functions.elementary.complexes import polar_lift assert hyper([polar_lift(z)], [polar_lift(k)], polar_lift(x)) == \ hyper([z], [k], polar_lift(x)) # hyper does not automatically evaluate anyway, but the test is to make # sure that the evaluate keyword is accepted assert hyper((1, 2), (1,), z, evaluate=False).func is hyper def test_expand_func(): # evaluation at 1 of Gauss' hypergeometric function: from sympy.abc import a, b, c from sympy.core.function import expand_func a1, b1, c1 = randcplx(), randcplx(), randcplx() + 5 assert expand_func(hyper([a, b], [c], 1)) == \ gamma(c)*gamma(-a - b + c)/(gamma(-a + c)*gamma(-b + c)) assert abs(expand_func(hyper([a1, b1], [c1], 1)).n() - hyper([a1, b1], [c1], 1).n()) < 1e-10 # hyperexpand wrapper for hyper: assert expand_func(hyper([], [], z)) == exp(z) assert expand_func(hyper([1, 2, 3], [], z)) == hyper([1, 2, 3], [], z) assert expand_func(meijerg([[1, 1], []], [[1], [0]], z)) == log(z + 1) assert expand_func(meijerg([[1, 1], []], [[], []], z)) == \ meijerg([[1, 1], []], [[], []], z) def replace_dummy(expr, sym): from sympy.core.symbol import Dummy dum = expr.atoms(Dummy) if not dum: return expr assert len(dum) == 1 return expr.xreplace({dum.pop(): sym}) def test_hyper_rewrite_sum(): from sympy.concrete.summations import Sum from sympy.core.symbol import Dummy from sympy.functions.combinatorial.factorials import (RisingFactorial, factorial) _k = Dummy("k") assert replace_dummy(hyper((1, 2), (1, 3), x).rewrite(Sum), _k) == \ Sum(x**_k / factorial(_k) * RisingFactorial(2, _k) / RisingFactorial(3, _k), (_k, 0, oo)) assert hyper((1, 2, 3), (-1, 3), z).rewrite(Sum) == \ hyper((1, 2, 3), (-1, 3), z) def test_radius_of_convergence(): assert hyper((1, 2), [3], z).radius_of_convergence == 1 assert hyper((1, 2), [3, 4], z).radius_of_convergence is oo assert hyper((1, 2, 3), [4], z).radius_of_convergence == 0 assert hyper((0, 1, 2), [4], z).radius_of_convergence is oo assert hyper((-1, 1, 2), [-4], z).radius_of_convergence == 0 assert hyper((-1, -2, 2), [-1], z).radius_of_convergence is oo assert hyper((-1, 2), [-1, -2], z).radius_of_convergence == 0 assert hyper([-1, 1, 3], [-2, 2], z).radius_of_convergence == 1 assert hyper([-1, 1], [-2, 2], z).radius_of_convergence is oo assert hyper([-1, 1, 3], [-2], z).radius_of_convergence == 0 assert hyper((-1, 2, 3, 4), [], z).radius_of_convergence is oo assert hyper([1, 1], [3], 1).convergence_statement == True assert hyper([1, 1], [2], 1).convergence_statement == False assert hyper([1, 1], [2], -1).convergence_statement == True assert hyper([1, 1], [1], -1).convergence_statement == False def test_meijer(): raises(TypeError, lambda: meijerg(1, z)) raises(TypeError, lambda: meijerg(((1,), (2,)), (3,), (4,), z)) assert meijerg(((1, 2), (3,)), ((4,), (5,)), z) == \ meijerg(Tuple(1, 2), Tuple(3), Tuple(4), Tuple(5), z) g = meijerg((1, 2), (3, 4, 5), (6, 7, 8, 9), (10, 11, 12, 13, 14), z) assert g.an == Tuple(1, 2) assert g.ap == Tuple(1, 2, 3, 4, 5) assert g.aother == Tuple(3, 4, 5) assert g.bm == Tuple(6, 7, 8, 9) assert g.bq == Tuple(6, 7, 8, 9, 10, 11, 12, 13, 14) assert g.bother == Tuple(10, 11, 12, 13, 14) assert g.argument == z assert g.nu == 75 assert g.delta == -1 assert g.is_commutative is True assert g.is_number is False #issue 13071 assert meijerg([[],[]], [[S.Half],[0]], 1).is_number is True assert meijerg([1, 2], [3], [4], [5], z).delta == S.Half # just a few checks to make sure that all arguments go where they should assert tn(meijerg(Tuple(), Tuple(), Tuple(0), Tuple(), -z), exp(z), z) assert tn(sqrt(pi)*meijerg(Tuple(), Tuple(), Tuple(0), Tuple(S.Half), z**2/4), cos(z), z) assert tn(meijerg(Tuple(1, 1), Tuple(), Tuple(1), Tuple(0), z), log(1 + z), z) # test exceptions raises(ValueError, lambda: meijerg(((3, 1), (2,)), ((oo,), (2, 0)), x)) raises(ValueError, lambda: meijerg(((3, 1), (2,)), ((1,), (2, 0)), x)) # differentiation g = meijerg((randcplx(),), (randcplx() + 2*I,), Tuple(), (randcplx(), randcplx()), z) assert td(g, z) g = meijerg(Tuple(), (randcplx(),), Tuple(), (randcplx(), randcplx()), z) assert td(g, z) g = meijerg(Tuple(), Tuple(), Tuple(randcplx()), Tuple(randcplx(), randcplx()), z) assert td(g, z) a1, a2, b1, b2, c1, c2, d1, d2 = symbols('a1:3, b1:3, c1:3, d1:3') assert meijerg((a1, a2), (b1, b2), (c1, c2), (d1, d2), z).diff(z) == \ (meijerg((a1 - 1, a2), (b1, b2), (c1, c2), (d1, d2), z) + (a1 - 1)*meijerg((a1, a2), (b1, b2), (c1, c2), (d1, d2), z))/z assert meijerg([z, z], [], [], [], z).diff(z) == \ Derivative(meijerg([z, z], [], [], [], z), z) # meijerg is unbranched wrt parameters from sympy.functions.elementary.complexes import polar_lift as pl assert meijerg([pl(a1)], [pl(a2)], [pl(b1)], [pl(b2)], pl(z)) == \ meijerg([a1], [a2], [b1], [b2], pl(z)) # integrand from sympy.abc import a, b, c, d, s assert meijerg([a], [b], [c], [d], z).integrand(s) == \ z**s*gamma(c - s)*gamma(-a + s + 1)/(gamma(b - s)*gamma(-d + s + 1)) def test_meijerg_derivative(): assert meijerg([], [1, 1], [0, 0, x], [], z).diff(x) == \ log(z)*meijerg([], [1, 1], [0, 0, x], [], z) \ + 2*meijerg([], [1, 1, 1], [0, 0, x, 0], [], z) y = randcplx() a = 5 # mpmath chokes with non-real numbers, and Mod1 with floats assert td(meijerg([x], [], [], [], y), x) assert td(meijerg([x**2], [], [], [], y), x) assert td(meijerg([], [x], [], [], y), x) assert td(meijerg([], [], [x], [], y), x) assert td(meijerg([], [], [], [x], y), x) assert td(meijerg([x], [a], [a + 1], [], y), x) assert td(meijerg([x], [a + 1], [a], [], y), x) assert td(meijerg([x, a], [], [], [a + 1], y), x) assert td(meijerg([x, a + 1], [], [], [a], y), x) b = Rational(3, 2) assert td(meijerg([a + 2], [b], [b - 3, x], [a], y), x) def test_meijerg_period(): assert meijerg([], [1], [0], [], x).get_period() == 2*pi assert meijerg([1], [], [], [0], x).get_period() == 2*pi assert meijerg([], [], [0], [], x).get_period() == 2*pi # exp(x) assert meijerg( [], [], [0], [S.Half], x).get_period() == 2*pi # cos(sqrt(x)) assert meijerg( [], [], [S.Half], [0], x).get_period() == 4*pi # sin(sqrt(x)) assert meijerg([1, 1], [], [1], [0], x).get_period() is oo # log(1 + x) def test_hyper_unpolarify(): from sympy.functions.elementary.exponential import exp_polar a = exp_polar(2*pi*I)*x b = x assert hyper([], [], a).argument == b assert hyper([0], [], a).argument == a assert hyper([0], [0], a).argument == b assert hyper([0, 1], [0], a).argument == a assert hyper([0, 1], [0], exp_polar(2*pi*I)).argument == 1 @slow def test_hyperrep(): from sympy.functions.special.hyper import (HyperRep, HyperRep_atanh, HyperRep_power1, HyperRep_power2, HyperRep_log1, HyperRep_asin1, HyperRep_asin2, HyperRep_sqrts1, HyperRep_sqrts2, HyperRep_log2, HyperRep_cosasin, HyperRep_sinasin) # First test the base class works. from sympy.functions.elementary.exponential import exp_polar from sympy.functions.elementary.piecewise import Piecewise a, b, c, d, z = symbols('a b c d z') class myrep(HyperRep): @classmethod def _expr_small(cls, x): return a @classmethod def _expr_small_minus(cls, x): return b @classmethod def _expr_big(cls, x, n): return c*n @classmethod def _expr_big_minus(cls, x, n): return d*n assert myrep(z).rewrite('nonrep') == Piecewise((0, abs(z) > 1), (a, True)) assert myrep(exp_polar(I*pi)*z).rewrite('nonrep') == \ Piecewise((0, abs(z) > 1), (b, True)) assert myrep(exp_polar(2*I*pi)*z).rewrite('nonrep') == \ Piecewise((c, abs(z) > 1), (a, True)) assert myrep(exp_polar(3*I*pi)*z).rewrite('nonrep') == \ Piecewise((d, abs(z) > 1), (b, True)) assert myrep(exp_polar(4*I*pi)*z).rewrite('nonrep') == \ Piecewise((2*c, abs(z) > 1), (a, True)) assert myrep(exp_polar(5*I*pi)*z).rewrite('nonrep') == \ Piecewise((2*d, abs(z) > 1), (b, True)) assert myrep(z).rewrite('nonrepsmall') == a assert myrep(exp_polar(I*pi)*z).rewrite('nonrepsmall') == b def t(func, hyp, z): """ Test that func is a valid representation of hyp. """ # First test that func agrees with hyp for small z if not tn(func.rewrite('nonrepsmall'), hyp, z, a=Rational(-1, 2), b=Rational(-1, 2), c=S.Half, d=S.Half): return False # Next check that the two small representations agree. if not tn( func.rewrite('nonrepsmall').subs( z, exp_polar(I*pi)*z).replace(exp_polar, exp), func.subs(z, exp_polar(I*pi)*z).rewrite('nonrepsmall'), z, a=Rational(-1, 2), b=Rational(-1, 2), c=S.Half, d=S.Half): return False # Next check continuity along exp_polar(I*pi)*t expr = func.subs(z, exp_polar(I*pi)*z).rewrite('nonrep') if abs(expr.subs(z, 1 + 1e-15).n() - expr.subs(z, 1 - 1e-15).n()) > 1e-10: return False # Finally check continuity of the big reps. def dosubs(func, a, b): rv = func.subs(z, exp_polar(a)*z).rewrite('nonrep') return rv.subs(z, exp_polar(b)*z).replace(exp_polar, exp) for n in [0, 1, 2, 3, 4, -1, -2, -3, -4]: expr1 = dosubs(func, 2*I*pi*n, I*pi/2) expr2 = dosubs(func, 2*I*pi*n + I*pi, -I*pi/2) if not tn(expr1, expr2, z): return False expr1 = dosubs(func, 2*I*pi*(n + 1), -I*pi/2) expr2 = dosubs(func, 2*I*pi*n + I*pi, I*pi/2) if not tn(expr1, expr2, z): return False return True # Now test the various representatives. a = Rational(1, 3) assert t(HyperRep_atanh(z), hyper([S.Half, 1], [Rational(3, 2)], z), z) assert t(HyperRep_power1(a, z), hyper([-a], [], z), z) assert t(HyperRep_power2(a, z), hyper([a, a - S.Half], [2*a], z), z) assert t(HyperRep_log1(z), -z*hyper([1, 1], [2], z), z) assert t(HyperRep_asin1(z), hyper([S.Half, S.Half], [Rational(3, 2)], z), z) assert t(HyperRep_asin2(z), hyper([1, 1], [Rational(3, 2)], z), z) assert t(HyperRep_sqrts1(a, z), hyper([-a, S.Half - a], [S.Half], z), z) assert t(HyperRep_sqrts2(a, z), -2*z/(2*a + 1)*hyper([-a - S.Half, -a], [S.Half], z).diff(z), z) assert t(HyperRep_log2(z), -z/4*hyper([Rational(3, 2), 1, 1], [2, 2], z), z) assert t(HyperRep_cosasin(a, z), hyper([-a, a], [S.Half], z), z) assert t(HyperRep_sinasin(a, z), 2*a*z*hyper([1 - a, 1 + a], [Rational(3, 2)], z), z) @slow def test_meijerg_eval(): from sympy.functions.elementary.exponential import exp_polar from sympy.functions.special.bessel import besseli from sympy.abc import l a = randcplx() arg = x*exp_polar(k*pi*I) expr1 = pi*meijerg([[], [(a + 1)/2]], [[a/2], [-a/2, (a + 1)/2]], arg**2/4) expr2 = besseli(a, arg) # Test that the two expressions agree for all arguments. for x_ in [0.5, 1.5]: for k_ in [0.0, 0.1, 0.3, 0.5, 0.8, 1, 5.751, 15.3]: assert abs((expr1 - expr2).n(subs={x: x_, k: k_})) < 1e-10 assert abs((expr1 - expr2).n(subs={x: x_, k: -k_})) < 1e-10 # Test continuity independently eps = 1e-13 expr2 = expr1.subs(k, l) for x_ in [0.5, 1.5]: for k_ in [0.5, Rational(1, 3), 0.25, 0.75, Rational(2, 3), 1.0, 1.5]: assert abs((expr1 - expr2).n( subs={x: x_, k: k_ + eps, l: k_ - eps})) < 1e-10 assert abs((expr1 - expr2).n( subs={x: x_, k: -k_ + eps, l: -k_ - eps})) < 1e-10 expr = (meijerg(((0.5,), ()), ((0.5, 0, 0.5), ()), exp_polar(-I*pi)/4) + meijerg(((0.5,), ()), ((0.5, 0, 0.5), ()), exp_polar(I*pi)/4)) \ /(2*sqrt(pi)) assert (expr - pi/exp(1)).n(chop=True) == 0 def test_limits(): k, x = symbols('k, x') assert hyper((1,), (Rational(4, 3), Rational(5, 3)), k**2).series(k) == \ 1 + 9*k**2/20 + 81*k**4/1120 + O(k**6) # issue 6350 # https://github.com/sympy/sympy/issues/11465 assert limit(1/hyper((1, ), (1, ), x), x, 0) == 1 def test_appellf1(): a, b1, b2, c, x, y = symbols('a b1 b2 c x y') assert appellf1(a, b2, b1, c, y, x) == appellf1(a, b1, b2, c, x, y) assert appellf1(a, b1, b1, c, y, x) == appellf1(a, b1, b1, c, x, y) assert appellf1(a, b1, b2, c, S.Zero, S.Zero) is S.One f = appellf1(a, b1, b2, c, S.Zero, S.Zero, evaluate=False) assert f.func is appellf1 assert f.doit() is S.One def test_derivative_appellf1(): from sympy.core.function import diff a, b1, b2, c, x, y, z = symbols('a b1 b2 c x y z') assert diff(appellf1(a, b1, b2, c, x, y), x) == a*b1*appellf1(a + 1, b2, b1 + 1, c + 1, y, x)/c assert diff(appellf1(a, b1, b2, c, x, y), y) == a*b2*appellf1(a + 1, b1, b2 + 1, c + 1, x, y)/c assert diff(appellf1(a, b1, b2, c, x, y), z) == 0 assert diff(appellf1(a, b1, b2, c, x, y), a) == Derivative(appellf1(a, b1, b2, c, x, y), a) def test_eval_nseries(): a1, b1, a2, b2 = symbols('a1 b1 a2 b2') assert hyper((1,2), (1,2,3), x**2)._eval_nseries(x, 7, None) == 1 + x**2/3 + x**4/24 + x**6/360 + O(x**7) assert exp(x)._eval_nseries(x,7,None) == hyper((a1, b1), (a1, b1), x)._eval_nseries(x, 7, None) assert hyper((a1, a2), (b1, b2), x)._eval_nseries(z, 7, None) == hyper((a1, a2), (b1, b2), x) + O(z**7)