"""Functions for reordering operator expressions.""" import warnings from sympy.core.add import Add from sympy.core.mul import Mul from sympy.core.numbers import Integer from sympy.core.power import Pow from sympy.physics.quantum import Operator, Commutator, AntiCommutator from sympy.physics.quantum.boson import BosonOp from sympy.physics.quantum.fermion import FermionOp __all__ = [ 'normal_order', 'normal_ordered_form' ] def _expand_powers(factors): """ Helper function for normal_ordered_form and normal_order: Expand a power expression to a multiplication expression so that that the expression can be handled by the normal ordering functions. """ new_factors = [] for factor in factors.args: if (isinstance(factor, Pow) and isinstance(factor.args[1], Integer) and factor.args[1] > 0): for n in range(factor.args[1]): new_factors.append(factor.args[0]) else: new_factors.append(factor) return new_factors def _normal_ordered_form_factor(product, independent=False, recursive_limit=10, _recursive_depth=0): """ Helper function for normal_ordered_form_factor: Write multiplication expression with bosonic or fermionic operators on normally ordered form, using the bosonic and fermionic commutation relations. The resulting operator expression is equivalent to the argument, but will in general be a sum of operator products instead of a simple product. """ factors = _expand_powers(product) new_factors = [] n = 0 while n < len(factors) - 1: if isinstance(factors[n], BosonOp): # boson if not isinstance(factors[n + 1], BosonOp): new_factors.append(factors[n]) elif factors[n].is_annihilation == factors[n + 1].is_annihilation: if (independent and str(factors[n].name) > str(factors[n + 1].name)): new_factors.append(factors[n + 1]) new_factors.append(factors[n]) n += 1 else: new_factors.append(factors[n]) elif not factors[n].is_annihilation: new_factors.append(factors[n]) else: if factors[n + 1].is_annihilation: new_factors.append(factors[n]) else: if factors[n].args[0] != factors[n + 1].args[0]: if independent: c = 0 else: c = Commutator(factors[n], factors[n + 1]) new_factors.append(factors[n + 1] * factors[n] + c) else: c = Commutator(factors[n], factors[n + 1]) new_factors.append( factors[n + 1] * factors[n] + c.doit()) n += 1 elif isinstance(factors[n], FermionOp): # fermion if not isinstance(factors[n + 1], FermionOp): new_factors.append(factors[n]) elif factors[n].is_annihilation == factors[n + 1].is_annihilation: if (independent and str(factors[n].name) > str(factors[n + 1].name)): new_factors.append(factors[n + 1]) new_factors.append(factors[n]) n += 1 else: new_factors.append(factors[n]) elif not factors[n].is_annihilation: new_factors.append(factors[n]) else: if factors[n + 1].is_annihilation: new_factors.append(factors[n]) else: if factors[n].args[0] != factors[n + 1].args[0]: if independent: c = 0 else: c = AntiCommutator(factors[n], factors[n + 1]) new_factors.append(-factors[n + 1] * factors[n] + c) else: c = AntiCommutator(factors[n], factors[n + 1]) new_factors.append( -factors[n + 1] * factors[n] + c.doit()) n += 1 elif isinstance(factors[n], Operator): if isinstance(factors[n + 1], (BosonOp, FermionOp)): new_factors.append(factors[n + 1]) new_factors.append(factors[n]) n += 1 else: new_factors.append(factors[n]) else: new_factors.append(factors[n]) n += 1 if n == len(factors) - 1: new_factors.append(factors[-1]) if new_factors == factors: return product else: expr = Mul(*new_factors).expand() return normal_ordered_form(expr, recursive_limit=recursive_limit, _recursive_depth=_recursive_depth + 1, independent=independent) def _normal_ordered_form_terms(expr, independent=False, recursive_limit=10, _recursive_depth=0): """ Helper function for normal_ordered_form: loop through each term in an addition expression and call _normal_ordered_form_factor to perform the factor to an normally ordered expression. """ new_terms = [] for term in expr.args: if isinstance(term, Mul): new_term = _normal_ordered_form_factor( term, recursive_limit=recursive_limit, _recursive_depth=_recursive_depth, independent=independent) new_terms.append(new_term) else: new_terms.append(term) return Add(*new_terms) def normal_ordered_form(expr, independent=False, recursive_limit=10, _recursive_depth=0): """Write an expression with bosonic or fermionic operators on normal ordered form, where each term is normally ordered. Note that this normal ordered form is equivalent to the original expression. Parameters ========== expr : expression The expression write on normal ordered form. recursive_limit : int (default 10) The number of allowed recursive applications of the function. Examples ======== >>> from sympy.physics.quantum import Dagger >>> from sympy.physics.quantum.boson import BosonOp >>> from sympy.physics.quantum.operatorordering import normal_ordered_form >>> a = BosonOp("a") >>> normal_ordered_form(a * Dagger(a)) 1 + Dagger(a)*a """ if _recursive_depth > recursive_limit: warnings.warn("Too many recursions, aborting") return expr if isinstance(expr, Add): return _normal_ordered_form_terms(expr, recursive_limit=recursive_limit, _recursive_depth=_recursive_depth, independent=independent) elif isinstance(expr, Mul): return _normal_ordered_form_factor(expr, recursive_limit=recursive_limit, _recursive_depth=_recursive_depth, independent=independent) else: return expr def _normal_order_factor(product, recursive_limit=10, _recursive_depth=0): """ Helper function for normal_order: Normal order a multiplication expression with bosonic or fermionic operators. In general the resulting operator expression will not be equivalent to original product. """ factors = _expand_powers(product) n = 0 new_factors = [] while n < len(factors) - 1: if (isinstance(factors[n], BosonOp) and factors[n].is_annihilation): # boson if not isinstance(factors[n + 1], BosonOp): new_factors.append(factors[n]) else: if factors[n + 1].is_annihilation: new_factors.append(factors[n]) else: if factors[n].args[0] != factors[n + 1].args[0]: new_factors.append(factors[n + 1] * factors[n]) else: new_factors.append(factors[n + 1] * factors[n]) n += 1 elif (isinstance(factors[n], FermionOp) and factors[n].is_annihilation): # fermion if not isinstance(factors[n + 1], FermionOp): new_factors.append(factors[n]) else: if factors[n + 1].is_annihilation: new_factors.append(factors[n]) else: if factors[n].args[0] != factors[n + 1].args[0]: new_factors.append(-factors[n + 1] * factors[n]) else: new_factors.append(-factors[n + 1] * factors[n]) n += 1 else: new_factors.append(factors[n]) n += 1 if n == len(factors) - 1: new_factors.append(factors[-1]) if new_factors == factors: return product else: expr = Mul(*new_factors).expand() return normal_order(expr, recursive_limit=recursive_limit, _recursive_depth=_recursive_depth + 1) def _normal_order_terms(expr, recursive_limit=10, _recursive_depth=0): """ Helper function for normal_order: look through each term in an addition expression and call _normal_order_factor to perform the normal ordering on the factors. """ new_terms = [] for term in expr.args: if isinstance(term, Mul): new_term = _normal_order_factor(term, recursive_limit=recursive_limit, _recursive_depth=_recursive_depth) new_terms.append(new_term) else: new_terms.append(term) return Add(*new_terms) def normal_order(expr, recursive_limit=10, _recursive_depth=0): """Normal order an expression with bosonic or fermionic operators. Note that this normal order is not equivalent to the original expression, but the creation and annihilation operators in each term in expr is reordered so that the expression becomes normal ordered. Parameters ========== expr : expression The expression to normal order. recursive_limit : int (default 10) The number of allowed recursive applications of the function. Examples ======== >>> from sympy.physics.quantum import Dagger >>> from sympy.physics.quantum.boson import BosonOp >>> from sympy.physics.quantum.operatorordering import normal_order >>> a = BosonOp("a") >>> normal_order(a * Dagger(a)) Dagger(a)*a """ if _recursive_depth > recursive_limit: warnings.warn("Too many recursions, aborting") return expr if isinstance(expr, Add): return _normal_order_terms(expr, recursive_limit=recursive_limit, _recursive_depth=_recursive_depth) elif isinstance(expr, Mul): return _normal_order_factor(expr, recursive_limit=recursive_limit, _recursive_depth=_recursive_depth) else: return expr