from math import prod from sympy.core.numbers import Rational from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.miscellaneous import sqrt from sympy.physics.quantum import Dagger, Commutator, qapply from sympy.physics.quantum.boson import BosonOp from sympy.physics.quantum.boson import ( BosonFockKet, BosonFockBra, BosonCoherentKet, BosonCoherentBra) def test_bosonoperator(): a = BosonOp('a') b = BosonOp('b') assert isinstance(a, BosonOp) assert isinstance(Dagger(a), BosonOp) assert a.is_annihilation assert not Dagger(a).is_annihilation assert BosonOp("a") == BosonOp("a", True) assert BosonOp("a") != BosonOp("c") assert BosonOp("a", True) != BosonOp("a", False) assert Commutator(a, Dagger(a)).doit() == 1 assert Commutator(a, Dagger(b)).doit() == a * Dagger(b) - Dagger(b) * a assert Dagger(exp(a)) == exp(Dagger(a)) def test_boson_states(): a = BosonOp("a") # Fock states n = 3 assert (BosonFockBra(0) * BosonFockKet(1)).doit() == 0 assert (BosonFockBra(1) * BosonFockKet(1)).doit() == 1 assert qapply(BosonFockBra(n) * Dagger(a)**n * BosonFockKet(0)) \ == sqrt(prod(range(1, n+1))) # Coherent states alpha1, alpha2 = 1.2, 4.3 assert (BosonCoherentBra(alpha1) * BosonCoherentKet(alpha1)).doit() == 1 assert (BosonCoherentBra(alpha2) * BosonCoherentKet(alpha2)).doit() == 1 assert abs((BosonCoherentBra(alpha1) * BosonCoherentKet(alpha2)).doit() - exp((alpha1 - alpha2) ** 2 * Rational(-1, 2))) < 1e-12 assert qapply(a * BosonCoherentKet(alpha1)) == \ alpha1 * BosonCoherentKet(alpha1)