"""Tests for cartesian.py""" from sympy.core.numbers import (I, pi) from sympy.core.singleton import S from sympy.core.symbol import symbols from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.special.delta_functions import DiracDelta from sympy.sets.sets import Interval from sympy.physics.quantum import qapply, represent, L2, Dagger from sympy.physics.quantum import Commutator, hbar from sympy.physics.quantum.cartesian import ( XOp, YOp, ZOp, PxOp, X, Y, Z, Px, XKet, XBra, PxKet, PxBra, PositionKet3D, PositionBra3D ) from sympy.physics.quantum.operator import DifferentialOperator x, y, z, x_1, x_2, x_3, y_1, z_1 = symbols('x,y,z,x_1,x_2,x_3,y_1,z_1') px, py, px_1, px_2 = symbols('px py px_1 px_2') def test_x(): assert X.hilbert_space == L2(Interval(S.NegativeInfinity, S.Infinity)) assert Commutator(X, Px).doit() == I*hbar assert qapply(X*XKet(x)) == x*XKet(x) assert XKet(x).dual_class() == XBra assert XBra(x).dual_class() == XKet assert (Dagger(XKet(y))*XKet(x)).doit() == DiracDelta(x - y) assert (PxBra(px)*XKet(x)).doit() == \ exp(-I*x*px/hbar)/sqrt(2*pi*hbar) assert represent(XKet(x)) == DiracDelta(x - x_1) assert represent(XBra(x)) == DiracDelta(-x + x_1) assert XBra(x).position == x assert represent(XOp()*XKet()) == x*DiracDelta(x - x_2) assert represent(XOp()*XKet()*XBra('y')) == \ x*DiracDelta(x - x_3)*DiracDelta(x_1 - y) assert represent(XBra("y")*XKet()) == DiracDelta(x - y) assert represent( XKet()*XBra()) == DiracDelta(x - x_2) * DiracDelta(x_1 - x) rep_p = represent(XOp(), basis=PxOp) assert rep_p == hbar*I*DiracDelta(px_1 - px_2)*DifferentialOperator(px_1) assert rep_p == represent(XOp(), basis=PxOp()) assert rep_p == represent(XOp(), basis=PxKet) assert rep_p == represent(XOp(), basis=PxKet()) assert represent(XOp()*PxKet(), basis=PxKet) == \ hbar*I*DiracDelta(px - px_2)*DifferentialOperator(px) def test_p(): assert Px.hilbert_space == L2(Interval(S.NegativeInfinity, S.Infinity)) assert qapply(Px*PxKet(px)) == px*PxKet(px) assert PxKet(px).dual_class() == PxBra assert PxBra(x).dual_class() == PxKet assert (Dagger(PxKet(py))*PxKet(px)).doit() == DiracDelta(px - py) assert (XBra(x)*PxKet(px)).doit() == \ exp(I*x*px/hbar)/sqrt(2*pi*hbar) assert represent(PxKet(px)) == DiracDelta(px - px_1) rep_x = represent(PxOp(), basis=XOp) assert rep_x == -hbar*I*DiracDelta(x_1 - x_2)*DifferentialOperator(x_1) assert rep_x == represent(PxOp(), basis=XOp()) assert rep_x == represent(PxOp(), basis=XKet) assert rep_x == represent(PxOp(), basis=XKet()) assert represent(PxOp()*XKet(), basis=XKet) == \ -hbar*I*DiracDelta(x - x_2)*DifferentialOperator(x) assert represent(XBra("y")*PxOp()*XKet(), basis=XKet) == \ -hbar*I*DiracDelta(x - y)*DifferentialOperator(x) def test_3dpos(): assert Y.hilbert_space == L2(Interval(S.NegativeInfinity, S.Infinity)) assert Z.hilbert_space == L2(Interval(S.NegativeInfinity, S.Infinity)) test_ket = PositionKet3D(x, y, z) assert qapply(X*test_ket) == x*test_ket assert qapply(Y*test_ket) == y*test_ket assert qapply(Z*test_ket) == z*test_ket assert qapply(X*Y*test_ket) == x*y*test_ket assert qapply(X*Y*Z*test_ket) == x*y*z*test_ket assert qapply(Y*Z*test_ket) == y*z*test_ket assert PositionKet3D() == test_ket assert YOp() == Y assert ZOp() == Z assert PositionKet3D.dual_class() == PositionBra3D assert PositionBra3D.dual_class() == PositionKet3D other_ket = PositionKet3D(x_1, y_1, z_1) assert (Dagger(other_ket)*test_ket).doit() == \ DiracDelta(x - x_1)*DiracDelta(y - y_1)*DiracDelta(z - z_1) assert test_ket.position_x == x assert test_ket.position_y == y assert test_ket.position_z == z assert other_ket.position_x == x_1 assert other_ket.position_y == y_1 assert other_ket.position_z == z_1 # TODO: Add tests for representations