from sympy.core.mul import Mul from sympy.core.numbers import Integer from sympy.core.symbol import Symbol from sympy.utilities import numbered_symbols from sympy.physics.quantum.gate import X, Y, Z, H, CNOT, CGate from sympy.physics.quantum.identitysearch import bfs_identity_search from sympy.physics.quantum.circuitutils import (kmp_table, find_subcircuit, replace_subcircuit, convert_to_symbolic_indices, convert_to_real_indices, random_reduce, random_insert, flatten_ids) from sympy.testing.pytest import slow def create_gate_sequence(qubit=0): gates = (X(qubit), Y(qubit), Z(qubit), H(qubit)) return gates def test_kmp_table(): word = ('a', 'b', 'c', 'd', 'a', 'b', 'd') expected_table = [-1, 0, 0, 0, 0, 1, 2] assert expected_table == kmp_table(word) word = ('P', 'A', 'R', 'T', 'I', 'C', 'I', 'P', 'A', 'T', 'E', ' ', 'I', 'N', ' ', 'P', 'A', 'R', 'A', 'C', 'H', 'U', 'T', 'E') expected_table = [-1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 1, 2, 3, 0, 0, 0, 0, 0] assert expected_table == kmp_table(word) x = X(0) y = Y(0) z = Z(0) h = H(0) word = (x, y, y, x, z) expected_table = [-1, 0, 0, 0, 1] assert expected_table == kmp_table(word) word = (x, x, y, h, z) expected_table = [-1, 0, 1, 0, 0] assert expected_table == kmp_table(word) def test_find_subcircuit(): x = X(0) y = Y(0) z = Z(0) h = H(0) x1 = X(1) y1 = Y(1) i0 = Symbol('i0') x_i0 = X(i0) y_i0 = Y(i0) z_i0 = Z(i0) h_i0 = H(i0) circuit = (x, y, z) assert find_subcircuit(circuit, (x,)) == 0 assert find_subcircuit(circuit, (x1,)) == -1 assert find_subcircuit(circuit, (y,)) == 1 assert find_subcircuit(circuit, (h,)) == -1 assert find_subcircuit(circuit, Mul(x, h)) == -1 assert find_subcircuit(circuit, Mul(x, y, z)) == 0 assert find_subcircuit(circuit, Mul(y, z)) == 1 assert find_subcircuit(Mul(*circuit), (x, y, z, h)) == -1 assert find_subcircuit(Mul(*circuit), (z, y, x)) == -1 assert find_subcircuit(circuit, (x,), start=2, end=1) == -1 circuit = (x, y, x, y, z) assert find_subcircuit(Mul(*circuit), Mul(x, y, z)) == 2 assert find_subcircuit(circuit, (x,), start=1) == 2 assert find_subcircuit(circuit, (x, y), start=1, end=2) == -1 assert find_subcircuit(Mul(*circuit), (x, y), start=1, end=3) == -1 assert find_subcircuit(circuit, (x, y), start=1, end=4) == 2 assert find_subcircuit(circuit, (x, y), start=2, end=4) == 2 circuit = (x, y, z, x1, x, y, z, h, x, y, x1, x, y, z, h, y1, h) assert find_subcircuit(circuit, (x, y, z, h, y1)) == 11 circuit = (x, y, x_i0, y_i0, z_i0, z) assert find_subcircuit(circuit, (x_i0, y_i0, z_i0)) == 2 circuit = (x_i0, y_i0, z_i0, x_i0, y_i0, h_i0) subcircuit = (x_i0, y_i0, z_i0) result = find_subcircuit(circuit, subcircuit) assert result == 0 def test_replace_subcircuit(): x = X(0) y = Y(0) z = Z(0) h = H(0) cnot = CNOT(1, 0) cgate_z = CGate((0,), Z(1)) # Standard cases circuit = (z, y, x, x) remove = (z, y, x) assert replace_subcircuit(circuit, Mul(*remove)) == (x,) assert replace_subcircuit(circuit, remove + (x,)) == () assert replace_subcircuit(circuit, remove, pos=1) == circuit assert replace_subcircuit(circuit, remove, pos=0) == (x,) assert replace_subcircuit(circuit, (x, x), pos=2) == (z, y) assert replace_subcircuit(circuit, (h,)) == circuit circuit = (x, y, x, y, z) remove = (x, y, z) assert replace_subcircuit(Mul(*circuit), Mul(*remove)) == (x, y) remove = (x, y, x, y) assert replace_subcircuit(circuit, remove) == (z,) circuit = (x, h, cgate_z, h, cnot) remove = (x, h, cgate_z) assert replace_subcircuit(circuit, Mul(*remove), pos=-1) == (h, cnot) assert replace_subcircuit(circuit, remove, pos=1) == circuit remove = (h, h) assert replace_subcircuit(circuit, remove) == circuit remove = (h, cgate_z, h, cnot) assert replace_subcircuit(circuit, remove) == (x,) replace = (h, x) actual = replace_subcircuit(circuit, remove, replace=replace) assert actual == (x, h, x) circuit = (x, y, h, x, y, z) remove = (x, y) replace = (cnot, cgate_z) actual = replace_subcircuit(circuit, remove, replace=Mul(*replace)) assert actual == (cnot, cgate_z, h, x, y, z) actual = replace_subcircuit(circuit, remove, replace=replace, pos=1) assert actual == (x, y, h, cnot, cgate_z, z) def test_convert_to_symbolic_indices(): (x, y, z, h) = create_gate_sequence() i0 = Symbol('i0') exp_map = {i0: Integer(0)} actual, act_map, sndx, gen = convert_to_symbolic_indices((x,)) assert actual == (X(i0),) assert act_map == exp_map expected = (X(i0), Y(i0), Z(i0), H(i0)) exp_map = {i0: Integer(0)} actual, act_map, sndx, gen = convert_to_symbolic_indices((x, y, z, h)) assert actual == expected assert exp_map == act_map (x1, y1, z1, h1) = create_gate_sequence(1) i1 = Symbol('i1') expected = (X(i0), Y(i0), Z(i0), H(i0)) exp_map = {i0: Integer(1)} actual, act_map, sndx, gen = convert_to_symbolic_indices((x1, y1, z1, h1)) assert actual == expected assert act_map == exp_map expected = (X(i0), Y(i0), Z(i0), H(i0), X(i1), Y(i1), Z(i1), H(i1)) exp_map = {i0: Integer(0), i1: Integer(1)} actual, act_map, sndx, gen = convert_to_symbolic_indices((x, y, z, h, x1, y1, z1, h1)) assert actual == expected assert act_map == exp_map exp_map = {i0: Integer(1), i1: Integer(0)} actual, act_map, sndx, gen = convert_to_symbolic_indices(Mul(x1, y1, z1, h1, x, y, z, h)) assert actual == expected assert act_map == exp_map expected = (X(i0), X(i1), Y(i0), Y(i1), Z(i0), Z(i1), H(i0), H(i1)) exp_map = {i0: Integer(0), i1: Integer(1)} actual, act_map, sndx, gen = convert_to_symbolic_indices(Mul(x, x1, y, y1, z, z1, h, h1)) assert actual == expected assert act_map == exp_map exp_map = {i0: Integer(1), i1: Integer(0)} actual, act_map, sndx, gen = convert_to_symbolic_indices((x1, x, y1, y, z1, z, h1, h)) assert actual == expected assert act_map == exp_map cnot_10 = CNOT(1, 0) cnot_01 = CNOT(0, 1) cgate_z_10 = CGate(1, Z(0)) cgate_z_01 = CGate(0, Z(1)) expected = (X(i0), X(i1), Y(i0), Y(i1), Z(i0), Z(i1), H(i0), H(i1), CNOT(i1, i0), CNOT(i0, i1), CGate(i1, Z(i0)), CGate(i0, Z(i1))) exp_map = {i0: Integer(0), i1: Integer(1)} args = (x, x1, y, y1, z, z1, h, h1, cnot_10, cnot_01, cgate_z_10, cgate_z_01) actual, act_map, sndx, gen = convert_to_symbolic_indices(args) assert actual == expected assert act_map == exp_map args = (x1, x, y1, y, z1, z, h1, h, cnot_10, cnot_01, cgate_z_10, cgate_z_01) expected = (X(i0), X(i1), Y(i0), Y(i1), Z(i0), Z(i1), H(i0), H(i1), CNOT(i0, i1), CNOT(i1, i0), CGate(i0, Z(i1)), CGate(i1, Z(i0))) exp_map = {i0: Integer(1), i1: Integer(0)} actual, act_map, sndx, gen = convert_to_symbolic_indices(args) assert actual == expected assert act_map == exp_map args = (cnot_10, h, cgate_z_01, h) expected = (CNOT(i0, i1), H(i1), CGate(i1, Z(i0)), H(i1)) exp_map = {i0: Integer(1), i1: Integer(0)} actual, act_map, sndx, gen = convert_to_symbolic_indices(args) assert actual == expected assert act_map == exp_map args = (cnot_01, h1, cgate_z_10, h1) exp_map = {i0: Integer(0), i1: Integer(1)} actual, act_map, sndx, gen = convert_to_symbolic_indices(args) assert actual == expected assert act_map == exp_map args = (cnot_10, h1, cgate_z_01, h1) expected = (CNOT(i0, i1), H(i0), CGate(i1, Z(i0)), H(i0)) exp_map = {i0: Integer(1), i1: Integer(0)} actual, act_map, sndx, gen = convert_to_symbolic_indices(args) assert actual == expected assert act_map == exp_map i2 = Symbol('i2') ccgate_z = CGate(0, CGate(1, Z(2))) ccgate_x = CGate(1, CGate(2, X(0))) args = (ccgate_z, ccgate_x) expected = (CGate(i0, CGate(i1, Z(i2))), CGate(i1, CGate(i2, X(i0)))) exp_map = {i0: Integer(0), i1: Integer(1), i2: Integer(2)} actual, act_map, sndx, gen = convert_to_symbolic_indices(args) assert actual == expected assert act_map == exp_map ndx_map = {i0: Integer(0)} index_gen = numbered_symbols(prefix='i', start=1) actual, act_map, sndx, gen = convert_to_symbolic_indices(args, qubit_map=ndx_map, start=i0, gen=index_gen) assert actual == expected assert act_map == exp_map i3 = Symbol('i3') cgate_x0_c321 = CGate((3, 2, 1), X(0)) exp_map = {i0: Integer(3), i1: Integer(2), i2: Integer(1), i3: Integer(0)} expected = (CGate((i0, i1, i2), X(i3)),) args = (cgate_x0_c321,) actual, act_map, sndx, gen = convert_to_symbolic_indices(args) assert actual == expected assert act_map == exp_map def test_convert_to_real_indices(): i0 = Symbol('i0') i1 = Symbol('i1') (x, y, z, h) = create_gate_sequence() x_i0 = X(i0) y_i0 = Y(i0) z_i0 = Z(i0) qubit_map = {i0: 0} args = (z_i0, y_i0, x_i0) expected = (z, y, x) actual = convert_to_real_indices(args, qubit_map) assert actual == expected cnot_10 = CNOT(1, 0) cnot_01 = CNOT(0, 1) cgate_z_10 = CGate(1, Z(0)) cgate_z_01 = CGate(0, Z(1)) cnot_i1_i0 = CNOT(i1, i0) cnot_i0_i1 = CNOT(i0, i1) cgate_z_i1_i0 = CGate(i1, Z(i0)) qubit_map = {i0: 0, i1: 1} args = (cnot_i1_i0,) expected = (cnot_10,) actual = convert_to_real_indices(args, qubit_map) assert actual == expected args = (cgate_z_i1_i0,) expected = (cgate_z_10,) actual = convert_to_real_indices(args, qubit_map) assert actual == expected args = (cnot_i0_i1,) expected = (cnot_01,) actual = convert_to_real_indices(args, qubit_map) assert actual == expected qubit_map = {i0: 1, i1: 0} args = (cgate_z_i1_i0,) expected = (cgate_z_01,) actual = convert_to_real_indices(args, qubit_map) assert actual == expected i2 = Symbol('i2') ccgate_z = CGate(i0, CGate(i1, Z(i2))) ccgate_x = CGate(i1, CGate(i2, X(i0))) qubit_map = {i0: 0, i1: 1, i2: 2} args = (ccgate_z, ccgate_x) expected = (CGate(0, CGate(1, Z(2))), CGate(1, CGate(2, X(0)))) actual = convert_to_real_indices(Mul(*args), qubit_map) assert actual == expected qubit_map = {i0: 1, i2: 0, i1: 2} args = (ccgate_x, ccgate_z) expected = (CGate(2, CGate(0, X(1))), CGate(1, CGate(2, Z(0)))) actual = convert_to_real_indices(args, qubit_map) assert actual == expected @slow def test_random_reduce(): x = X(0) y = Y(0) z = Z(0) h = H(0) cnot = CNOT(1, 0) cgate_z = CGate((0,), Z(1)) gate_list = [x, y, z] ids = list(bfs_identity_search(gate_list, 1, max_depth=4)) circuit = (x, y, h, z, cnot) assert random_reduce(circuit, []) == circuit assert random_reduce(circuit, ids) == circuit seq = [2, 11, 9, 3, 5] circuit = (x, y, z, x, y, h) assert random_reduce(circuit, ids, seed=seq) == (x, y, h) circuit = (x, x, y, y, z, z) assert random_reduce(circuit, ids, seed=seq) == (x, x, y, y) seq = [14, 13, 0] assert random_reduce(circuit, ids, seed=seq) == (y, y, z, z) gate_list = [x, y, z, h, cnot, cgate_z] ids = list(bfs_identity_search(gate_list, 2, max_depth=4)) seq = [25] circuit = (x, y, z, y, h, y, h, cgate_z, h, cnot) expected = (x, y, z, cgate_z, h, cnot) assert random_reduce(circuit, ids, seed=seq) == expected circuit = Mul(*circuit) assert random_reduce(circuit, ids, seed=seq) == expected @slow def test_random_insert(): x = X(0) y = Y(0) z = Z(0) h = H(0) cnot = CNOT(1, 0) cgate_z = CGate((0,), Z(1)) choices = [(x, x)] circuit = (y, y) loc, choice = 0, 0 actual = random_insert(circuit, choices, seed=[loc, choice]) assert actual == (x, x, y, y) circuit = (x, y, z, h) choices = [(h, h), (x, y, z)] expected = (x, x, y, z, y, z, h) loc, choice = 1, 1 actual = random_insert(circuit, choices, seed=[loc, choice]) assert actual == expected gate_list = [x, y, z, h, cnot, cgate_z] ids = list(bfs_identity_search(gate_list, 2, max_depth=4)) eq_ids = flatten_ids(ids) circuit = (x, y, h, cnot, cgate_z) expected = (x, z, x, z, x, y, h, cnot, cgate_z) loc, choice = 1, 30 actual = random_insert(circuit, eq_ids, seed=[loc, choice]) assert actual == expected circuit = Mul(*circuit) actual = random_insert(circuit, eq_ids, seed=[loc, choice]) assert actual == expected