from sympy.functions.elementary.miscellaneous import sqrt from sympy.matrices.dense import Matrix from sympy.physics.quantum.represent import represent from sympy.physics.quantum.qapply import qapply from sympy.physics.quantum.qubit import IntQubit from sympy.physics.quantum.grover import (apply_grover, superposition_basis, OracleGate, grover_iteration, WGate) def return_one_on_two(qubits): return qubits == IntQubit(2, qubits.nqubits) def return_one_on_one(qubits): return qubits == IntQubit(1, nqubits=qubits.nqubits) def test_superposition_basis(): nbits = 2 first_half_state = IntQubit(0, nqubits=nbits)/2 + IntQubit(1, nqubits=nbits)/2 second_half_state = IntQubit(2, nbits)/2 + IntQubit(3, nbits)/2 assert first_half_state + second_half_state == superposition_basis(nbits) nbits = 3 firstq = (1/sqrt(8))*IntQubit(0, nqubits=nbits) + (1/sqrt(8))*IntQubit(1, nqubits=nbits) secondq = (1/sqrt(8))*IntQubit(2, nbits) + (1/sqrt(8))*IntQubit(3, nbits) thirdq = (1/sqrt(8))*IntQubit(4, nbits) + (1/sqrt(8))*IntQubit(5, nbits) fourthq = (1/sqrt(8))*IntQubit(6, nbits) + (1/sqrt(8))*IntQubit(7, nbits) assert firstq + secondq + thirdq + fourthq == superposition_basis(nbits) def test_OracleGate(): v = OracleGate(1, lambda qubits: qubits == IntQubit(0)) assert qapply(v*IntQubit(0)) == -IntQubit(0) assert qapply(v*IntQubit(1)) == IntQubit(1) nbits = 2 v = OracleGate(2, return_one_on_two) assert qapply(v*IntQubit(0, nbits)) == IntQubit(0, nqubits=nbits) assert qapply(v*IntQubit(1, nbits)) == IntQubit(1, nqubits=nbits) assert qapply(v*IntQubit(2, nbits)) == -IntQubit(2, nbits) assert qapply(v*IntQubit(3, nbits)) == IntQubit(3, nbits) assert represent(OracleGate(1, lambda qubits: qubits == IntQubit(0)), nqubits=1) == \ Matrix([[-1, 0], [0, 1]]) assert represent(v, nqubits=2) == Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]]) def test_WGate(): nqubits = 2 basis_states = superposition_basis(nqubits) assert qapply(WGate(nqubits)*basis_states) == basis_states expected = ((2/sqrt(pow(2, nqubits)))*basis_states) - IntQubit(1, nqubits=nqubits) assert qapply(WGate(nqubits)*IntQubit(1, nqubits=nqubits)) == expected def test_grover_iteration_1(): numqubits = 2 basis_states = superposition_basis(numqubits) v = OracleGate(numqubits, return_one_on_one) expected = IntQubit(1, nqubits=numqubits) assert qapply(grover_iteration(basis_states, v)) == expected def test_grover_iteration_2(): numqubits = 4 basis_states = superposition_basis(numqubits) v = OracleGate(numqubits, return_one_on_two) # After (pi/4)sqrt(pow(2, n)), IntQubit(2) should have highest prob # In this case, after around pi times (3 or 4) iterated = grover_iteration(basis_states, v) iterated = qapply(iterated) iterated = grover_iteration(iterated, v) iterated = qapply(iterated) iterated = grover_iteration(iterated, v) iterated = qapply(iterated) # In this case, probability was highest after 3 iterations # Probability of Qubit('0010') was 251/256 (3) vs 781/1024 (4) # Ask about measurement expected = (-13*basis_states)/64 + 264*IntQubit(2, numqubits)/256 assert qapply(expected) == iterated def test_grover(): nqubits = 2 assert apply_grover(return_one_on_one, nqubits) == IntQubit(1, nqubits=nqubits) nqubits = 4 basis_states = superposition_basis(nqubits) expected = (-13*basis_states)/64 + 264*IntQubit(2, nqubits)/256 assert apply_grover(return_one_on_two, 4) == qapply(expected)