"""Test ideals.py code.""" from sympy.polys import QQ, ilex from sympy.abc import x, y, z from sympy.testing.pytest import raises def test_ideal_operations(): R = QQ.old_poly_ring(x, y) I = R.ideal(x) J = R.ideal(y) S = R.ideal(x*y) T = R.ideal(x, y) assert not (I == J) assert I == I assert I.union(J) == T assert I + J == T assert I + T == T assert not I.subset(T) assert T.subset(I) assert I.product(J) == S assert I*J == S assert x*J == S assert I*y == S assert R.convert(x)*J == S assert I*R.convert(y) == S assert not I.is_zero() assert not J.is_whole_ring() assert R.ideal(x**2 + 1, x).is_whole_ring() assert R.ideal() == R.ideal(0) assert R.ideal().is_zero() assert T.contains(x*y) assert T.subset([x, y]) assert T.in_terms_of_generators(x) == [R(1), R(0)] assert T**0 == R.ideal(1) assert T**1 == T assert T**2 == R.ideal(x**2, y**2, x*y) assert I**5 == R.ideal(x**5) def test_exceptions(): I = QQ.old_poly_ring(x).ideal(x) J = QQ.old_poly_ring(y).ideal(1) raises(ValueError, lambda: I.union(x)) raises(ValueError, lambda: I + J) raises(ValueError, lambda: I * J) raises(ValueError, lambda: I.union(J)) assert (I == J) is False assert I != J def test_nontriv_global(): R = QQ.old_poly_ring(x, y, z) def contains(I, f): return R.ideal(*I).contains(f) assert contains([x, y], x) assert contains([x, y], x + y) assert not contains([x, y], 1) assert not contains([x, y], z) assert contains([x**2 + y, x**2 + x], x - y) assert not contains([x + y + z, x*y + x*z + y*z, x*y*z], x**2) assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x**3) assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x**4) assert not contains([x + y + z, x*y + x*z + y*z, x*y*z], x*y**2) assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x**4 + y**3 + 2*z*y*x) assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x*y*z) assert contains([x, 1 + x + y, 5 - 7*y], 1) assert contains( [x**3 + y**3, y**3 + z**3, z**3 + x**3, x**2*y + x**2*z + y**2*z], x**3) assert not contains( [x**3 + y**3, y**3 + z**3, z**3 + x**3, x**2*y + x**2*z + y**2*z], x**2 + y**2) # compare local order assert not contains([x*(1 + x + y), y*(1 + z)], x) assert not contains([x*(1 + x + y), y*(1 + z)], x + y) def test_nontriv_local(): R = QQ.old_poly_ring(x, y, z, order=ilex) def contains(I, f): return R.ideal(*I).contains(f) assert contains([x, y], x) assert contains([x, y], x + y) assert not contains([x, y], 1) assert not contains([x, y], z) assert contains([x**2 + y, x**2 + x], x - y) assert not contains([x + y + z, x*y + x*z + y*z, x*y*z], x**2) assert contains([x*(1 + x + y), y*(1 + z)], x) assert contains([x*(1 + x + y), y*(1 + z)], x + y) def test_intersection(): R = QQ.old_poly_ring(x, y, z) # SCA, example 1.8.11 assert R.ideal(x, y).intersect(R.ideal(y**2, z)) == R.ideal(y**2, y*z, x*z) assert R.ideal(x, y).intersect(R.ideal()).is_zero() R = QQ.old_poly_ring(x, y, z, order="ilex") assert R.ideal(x, y).intersect(R.ideal(y**2 + y**2*z, z + z*x**3*y)) == \ R.ideal(y**2, y*z, x*z) def test_quotient(): # SCA, example 1.8.13 R = QQ.old_poly_ring(x, y, z) assert R.ideal(x, y).quotient(R.ideal(y**2, z)) == R.ideal(x, y) def test_reduction(): from sympy.polys.distributedmodules import sdm_nf_buchberger_reduced R = QQ.old_poly_ring(x, y) I = R.ideal(x**5, y) e = R.convert(x**3 + y**2) assert I.reduce_element(e) == e assert I.reduce_element(e, NF=sdm_nf_buchberger_reduced) == R.convert(x**3)