"""Test modules.py code.""" from sympy.polys.agca.modules import FreeModule, ModuleOrder, FreeModulePolyRing from sympy.polys import CoercionFailed, QQ, lex, grlex, ilex, ZZ from sympy.abc import x, y, z from sympy.testing.pytest import raises from sympy.core.numbers import Rational def test_FreeModuleElement(): M = QQ.old_poly_ring(x).free_module(3) e = M.convert([1, x, x**2]) f = [QQ.old_poly_ring(x).convert(1), QQ.old_poly_ring(x).convert(x), QQ.old_poly_ring(x).convert(x**2)] assert list(e) == f assert f[0] == e[0] assert f[1] == e[1] assert f[2] == e[2] raises(IndexError, lambda: e[3]) g = M.convert([x, 0, 0]) assert e + g == M.convert([x + 1, x, x**2]) assert f + g == M.convert([x + 1, x, x**2]) assert -e == M.convert([-1, -x, -x**2]) assert e - g == M.convert([1 - x, x, x**2]) assert e != g assert M.convert([x, x, x]) / QQ.old_poly_ring(x).convert(x) == [1, 1, 1] R = QQ.old_poly_ring(x, order="ilex") assert R.free_module(1).convert([x]) / R.convert(x) == [1] def test_FreeModule(): M1 = FreeModule(QQ.old_poly_ring(x), 2) assert M1 == FreeModule(QQ.old_poly_ring(x), 2) assert M1 != FreeModule(QQ.old_poly_ring(y), 2) assert M1 != FreeModule(QQ.old_poly_ring(x), 3) M2 = FreeModule(QQ.old_poly_ring(x, order="ilex"), 2) assert [x, 1] in M1 assert [x] not in M1 assert [2, y] not in M1 assert [1/(x + 1), 2] not in M1 e = M1.convert([x, x**2 + 1]) X = QQ.old_poly_ring(x).convert(x) assert e == [X, X**2 + 1] assert e == [x, x**2 + 1] assert 2*e == [2*x, 2*x**2 + 2] assert e*2 == [2*x, 2*x**2 + 2] assert e/2 == [x/2, (x**2 + 1)/2] assert x*e == [x**2, x**3 + x] assert e*x == [x**2, x**3 + x] assert X*e == [x**2, x**3 + x] assert e*X == [x**2, x**3 + x] assert [x, 1] in M2 assert [x] not in M2 assert [2, y] not in M2 assert [1/(x + 1), 2] in M2 e = M2.convert([x, x**2 + 1]) X = QQ.old_poly_ring(x, order="ilex").convert(x) assert e == [X, X**2 + 1] assert e == [x, x**2 + 1] assert 2*e == [2*x, 2*x**2 + 2] assert e*2 == [2*x, 2*x**2 + 2] assert e/2 == [x/2, (x**2 + 1)/2] assert x*e == [x**2, x**3 + x] assert e*x == [x**2, x**3 + x] assert e/(1 + x) == [x/(1 + x), (x**2 + 1)/(1 + x)] assert X*e == [x**2, x**3 + x] assert e*X == [x**2, x**3 + x] M3 = FreeModule(QQ.old_poly_ring(x, y), 2) assert M3.convert(e) == M3.convert([x, x**2 + 1]) assert not M3.is_submodule(0) assert not M3.is_zero() raises(NotImplementedError, lambda: ZZ.old_poly_ring(x).free_module(2)) raises(NotImplementedError, lambda: FreeModulePolyRing(ZZ, 2)) raises(CoercionFailed, lambda: M1.convert(QQ.old_poly_ring(x).free_module(3) .convert([1, 2, 3]))) raises(CoercionFailed, lambda: M3.convert(1)) def test_ModuleOrder(): o1 = ModuleOrder(lex, grlex, False) o2 = ModuleOrder(ilex, lex, False) assert o1 == ModuleOrder(lex, grlex, False) assert (o1 != ModuleOrder(lex, grlex, False)) is False assert o1 != o2 assert o1((1, 2, 3)) == (1, (5, (2, 3))) assert o2((1, 2, 3)) == (-1, (2, 3)) def test_SubModulePolyRing_global(): R = QQ.old_poly_ring(x, y) F = R.free_module(3) Fd = F.submodule([1, 0, 0], [1, 2, 0], [1, 2, 3]) M = F.submodule([x**2 + y**2, 1, 0], [x, y, 1]) assert F == Fd assert Fd == F assert F != M assert M != F assert Fd != M assert M != Fd assert Fd == F.submodule(*F.basis()) assert Fd.is_full_module() assert not M.is_full_module() assert not Fd.is_zero() assert not M.is_zero() assert Fd.submodule().is_zero() assert M.contains([x**2 + y**2 + x, 1 + y, 1]) assert not M.contains([x**2 + y**2 + x, 1 + y, 2]) assert M.contains([y**2, 1 - x*y, -x]) assert not F.submodule([1 + x, 0, 0]) == F.submodule([1, 0, 0]) assert F.submodule([1, 0, 0], [0, 1, 0]).union(F.submodule([0, 0, 1])) == F assert not M.is_submodule(0) m = F.convert([x**2 + y**2, 1, 0]) n = M.convert(m) assert m.module is F assert n.module is M raises(ValueError, lambda: M.submodule([1, 0, 0])) raises(TypeError, lambda: M.union(1)) raises(ValueError, lambda: M.union(R.free_module(1).submodule([x]))) assert F.submodule([x, x, x]) != F.submodule([x, x, x], order="ilex") def test_SubModulePolyRing_local(): R = QQ.old_poly_ring(x, y, order=ilex) F = R.free_module(3) Fd = F.submodule([1 + x, 0, 0], [1 + y, 2 + 2*y, 0], [1, 2, 3]) M = F.submodule([x**2 + y**2, 1, 0], [x, y, 1]) assert F == Fd assert Fd == F assert F != M assert M != F assert Fd != M assert M != Fd assert Fd == F.submodule(*F.basis()) assert Fd.is_full_module() assert not M.is_full_module() assert not Fd.is_zero() assert not M.is_zero() assert Fd.submodule().is_zero() assert M.contains([x**2 + y**2 + x, 1 + y, 1]) assert not M.contains([x**2 + y**2 + x, 1 + y, 2]) assert M.contains([y**2, 1 - x*y, -x]) assert F.submodule([1 + x, 0, 0]) == F.submodule([1, 0, 0]) assert F.submodule( [1, 0, 0], [0, 1, 0]).union(F.submodule([0, 0, 1 + x*y])) == F raises(ValueError, lambda: M.submodule([1, 0, 0])) def test_SubModulePolyRing_nontriv_global(): R = QQ.old_poly_ring(x, y, z) F = R.free_module(1) def contains(I, f): return F.submodule(*[[g] for g in I]).contains([f]) assert contains([x, y], x) assert contains([x, y], x + y) assert not contains([x, y], 1) assert not contains([x, y], z) assert contains([x**2 + y, x**2 + x], x - y) assert not contains([x + y + z, x*y + x*z + y*z, x*y*z], x**2) assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x**3) assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x**4) assert not contains([x + y + z, x*y + x*z + y*z, x*y*z], x*y**2) assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x**4 + y**3 + 2*z*y*x) assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x*y*z) assert contains([x, 1 + x + y, 5 - 7*y], 1) assert contains( [x**3 + y**3, y**3 + z**3, z**3 + x**3, x**2*y + x**2*z + y**2*z], x**3) assert not contains( [x**3 + y**3, y**3 + z**3, z**3 + x**3, x**2*y + x**2*z + y**2*z], x**2 + y**2) # compare local order assert not contains([x*(1 + x + y), y*(1 + z)], x) assert not contains([x*(1 + x + y), y*(1 + z)], x + y) def test_SubModulePolyRing_nontriv_local(): R = QQ.old_poly_ring(x, y, z, order=ilex) F = R.free_module(1) def contains(I, f): return F.submodule(*[[g] for g in I]).contains([f]) assert contains([x, y], x) assert contains([x, y], x + y) assert not contains([x, y], 1) assert not contains([x, y], z) assert contains([x**2 + y, x**2 + x], x - y) assert not contains([x + y + z, x*y + x*z + y*z, x*y*z], x**2) assert contains([x*(1 + x + y), y*(1 + z)], x) assert contains([x*(1 + x + y), y*(1 + z)], x + y) def test_syzygy(): R = QQ.old_poly_ring(x, y, z) M = R.free_module(1).submodule([x*y], [y*z], [x*z]) S = R.free_module(3).submodule([0, x, -y], [z, -x, 0]) assert M.syzygy_module() == S M2 = M / ([x*y*z],) S2 = R.free_module(3).submodule([z, 0, 0], [0, x, 0], [0, 0, y]) assert M2.syzygy_module() == S2 F = R.free_module(3) assert F.submodule(*F.basis()).syzygy_module() == F.submodule() R2 = QQ.old_poly_ring(x, y, z) / [x*y*z] M3 = R2.free_module(1).submodule([x*y], [y*z], [x*z]) S3 = R2.free_module(3).submodule([z, 0, 0], [0, x, 0], [0, 0, y]) assert M3.syzygy_module() == S3 def test_in_terms_of_generators(): R = QQ.old_poly_ring(x, order="ilex") M = R.free_module(2).submodule([2*x, 0], [1, 2]) assert M.in_terms_of_generators( [x, x]) == [R.convert(Rational(1, 4)), R.convert(x/2)] raises(ValueError, lambda: M.in_terms_of_generators([1, 0])) M = R.free_module(2) / ([x, 0], [1, 1]) SM = M.submodule([1, x]) assert SM.in_terms_of_generators([2, 0]) == [R.convert(-2/(x - 1))] R = QQ.old_poly_ring(x, y) / [x**2 - y**2] M = R.free_module(2) SM = M.submodule([x, 0], [0, y]) assert SM.in_terms_of_generators( [x**2, x**2]) == [R.convert(x), R.convert(y)] def test_QuotientModuleElement(): R = QQ.old_poly_ring(x) F = R.free_module(3) N = F.submodule([1, x, x**2]) M = F/N e = M.convert([x**2, 2, 0]) assert M.convert([x + 1, x**2 + x, x**3 + x**2]) == 0 assert e == [x**2, 2, 0] + N == F.convert([x**2, 2, 0]) + N == \ M.convert(F.convert([x**2, 2, 0])) assert M.convert([x**2 + 1, 2*x + 2, x**2]) == e + [0, x, 0] == \ e + M.convert([0, x, 0]) == e + F.convert([0, x, 0]) assert M.convert([x**2 + 1, 2, x**2]) == e - [0, x, 0] == \ e - M.convert([0, x, 0]) == e - F.convert([0, x, 0]) assert M.convert([0, 2, 0]) == M.convert([x**2, 4, 0]) - e == \ [x**2, 4, 0] - e == F.convert([x**2, 4, 0]) - e assert M.convert([x**3 + x**2, 2*x + 2, 0]) == (1 + x)*e == \ R.convert(1 + x)*e == e*(1 + x) == e*R.convert(1 + x) assert -e == [-x**2, -2, 0] f = [x, x, 0] + N assert M.convert([1, 1, 0]) == f / x == f / R.convert(x) M2 = F/[(2, 2*x, 2*x**2), (0, 0, 1)] G = R.free_module(2) M3 = G/[[1, x]] M4 = F.submodule([1, x, x**2], [1, 0, 0]) / N raises(CoercionFailed, lambda: M.convert(G.convert([1, x]))) raises(CoercionFailed, lambda: M.convert(M3.convert([1, x]))) raises(CoercionFailed, lambda: M.convert(M2.convert([1, x, x]))) assert M2.convert(M.convert([2, x, x**2])) == [2, x, 0] assert M.convert(M4.convert([2, 0, 0])) == [2, 0, 0] def test_QuotientModule(): R = QQ.old_poly_ring(x) F = R.free_module(3) N = F.submodule([1, x, x**2]) M = F/N assert M != F assert M != N assert M == F / [(1, x, x**2)] assert not M.is_zero() assert (F / F.basis()).is_zero() SQ = F.submodule([1, x, x**2], [2, 0, 0]) / N assert SQ == M.submodule([2, x, x**2]) assert SQ != M.submodule([2, 1, 0]) assert SQ != M assert M.is_submodule(SQ) assert not SQ.is_full_module() raises(ValueError, lambda: N/F) raises(ValueError, lambda: F.submodule([2, 0, 0]) / N) raises(ValueError, lambda: R.free_module(2)/F) raises(CoercionFailed, lambda: F.convert(M.convert([1, x, x**2]))) M1 = F / [[1, 1, 1]] M2 = M1.submodule([1, 0, 0], [0, 1, 0]) assert M1 == M2 def test_ModulesQuotientRing(): R = QQ.old_poly_ring(x, y, order=(("lex", x), ("ilex", y))) / [x**2 + 1] M1 = R.free_module(2) assert M1 == R.free_module(2) assert M1 != QQ.old_poly_ring(x).free_module(2) assert M1 != R.free_module(3) assert [x, 1] in M1 assert [x] not in M1 assert [1/(R.convert(x) + 1), 2] in M1 assert [1, 2/(1 + y)] in M1 assert [1, 2/y] not in M1 assert M1.convert([x**2, y]) == [-1, y] F = R.free_module(3) Fd = F.submodule([x**2, 0, 0], [1, 2, 0], [1, 2, 3]) M = F.submodule([x**2 + y**2, 1, 0], [x, y, 1]) assert F == Fd assert Fd == F assert F != M assert M != F assert Fd != M assert M != Fd assert Fd == F.submodule(*F.basis()) assert Fd.is_full_module() assert not M.is_full_module() assert not Fd.is_zero() assert not M.is_zero() assert Fd.submodule().is_zero() assert M.contains([x**2 + y**2 + x, -x**2 + y, 1]) assert not M.contains([x**2 + y**2 + x, 1 + y, 2]) assert M.contains([y**2, 1 - x*y, -x]) assert F.submodule([x, 0, 0]) == F.submodule([1, 0, 0]) assert not F.submodule([y, 0, 0]) == F.submodule([1, 0, 0]) assert F.submodule([1, 0, 0], [0, 1, 0]).union(F.submodule([0, 0, 1])) == F assert not M.is_submodule(0) def test_module_mul(): R = QQ.old_poly_ring(x) M = R.free_module(2) S1 = M.submodule([x, 0], [0, x]) S2 = M.submodule([x**2, 0], [0, x**2]) I = R.ideal(x) assert I*M == M*I == S1 == x*M == M*x assert I*S1 == S2 == x*S1 def test_intersection(): # SCA, example 2.8.5 F = QQ.old_poly_ring(x, y).free_module(2) M1 = F.submodule([x, y], [y, 1]) M2 = F.submodule([0, y - 1], [x, 1], [y, x]) I = F.submodule([x, y], [y**2 - y, y - 1], [x*y + y, x + 1]) I1, rel1, rel2 = M1.intersect(M2, relations=True) assert I1 == M2.intersect(M1) == I for i, g in enumerate(I1.gens): assert g == sum(c*x for c, x in zip(rel1[i], M1.gens)) \ == sum(d*y for d, y in zip(rel2[i], M2.gens)) assert F.submodule([x, y]).intersect(F.submodule([y, x])).is_zero() def test_quotient(): # SCA, example 2.8.6 R = QQ.old_poly_ring(x, y, z) F = R.free_module(2) assert F.submodule([x*y, x*z], [y*z, x*y]).module_quotient( F.submodule([y, z], [z, y])) == QQ.old_poly_ring(x, y, z).ideal(x**2*y**2 - x*y*z**2) assert F.submodule([x, y]).module_quotient(F.submodule()).is_whole_ring() M = F.submodule([x**2, x**2], [y**2, y**2]) N = F.submodule([x + y, x + y]) q, rel = M.module_quotient(N, relations=True) assert q == R.ideal(y**2, x - y) for i, g in enumerate(q.gens): assert g*N.gens[0] == sum(c*x for c, x in zip(rel[i], M.gens)) def test_groebner_extendend(): M = QQ.old_poly_ring(x, y, z).free_module(3).submodule([x + 1, y, 1], [x*y, z, z**2]) G, R = M._groebner_vec(extended=True) for i, g in enumerate(G): assert g == sum(c*gen for c, gen in zip(R[i], M.gens))